MomentsDMQ {DMQ} | R Documentation |
Estimate conditional moments using DMQ
Description
Compute DMQ implied conditional moments. At each point in time moments are computed using the discretized distribution implied by the estimated conditional quantiles.
Usage
MomentsDMQ(Fit)
Arguments
Fit |
The output of the function EstimateDMQ or UpdateDMQ. |
Details
Moments are computed using the following approximation:
\mathbb{E}[g(x)] \approx \sum_{j = 1}^J (\tau_j - \tau_{j-1}) g(\hat q_t^{\tau_j}),
with \tau_0 = 0
, where \hat q_t^{\tau_j}
are estimated quantiles.
Value
A list
of four elements:
mMoments |
a Tx4 |
mCenterdMoments |
a Tx4 |
vSkew |
a |
vKurt |
a |
Author(s)
Leopoldo Catania
Examples
# Load Microsoft Corporation logarithmic percentage returns from December 8,
# 2010 to November 15, 2018 for a total of T = 2000 observation
data("MSFT")
##############################################################
######################## Estimate DMQ ########################
##############################################################
# Estimate DMQ on the in sample period
Fit = EstimateDMQ(vY = vY,
vTau = seq(0.01, 0.99, 0.01),
iTau_star = 50,
FixReference = TRUE,
fn.optimizer = fn.solnp)
# Compute estimated moments
Moments = MomentsDMQ(Fit)