dm.network.dea {DJL} | R Documentation |
Distance measure using DEA on a two-stage network structure
Description
Implements Charnes & Cooper's data envelopment analysis (radial & oriented measure) on a two-stage network structure.
Usage
dm.network.dea(xdata.s1, ydata.s1=NULL, zdata, xdata.s2=NULL, ydata.s2,
rts="crs", orientation="i", type="nc", leader="1st", ss=10^-4, o=NULL)
Arguments
xdata.s1 |
Input(s) vector in Stage 1 (n by m.s1) |
ydata.s1 |
Output(s) vector in Stage 1 (n by s.s1) |
zdata |
Intermediate product(s) vector between Stage 1 and Stage 2 (n by p) |
xdata.s2 |
Input(s) vector in Stage 2 (n by m.s2) |
ydata.s2 |
Output(s) vector in Stage 2 (n by s.s2) |
rts |
Returns to scale assumption |
orientation |
Orientation of the measurement |
type |
Solution method |
leader |
Preemptive priority for Decentralized model |
ss |
Step size for heuristic search |
o |
DMU index to operate. |
Value
$eff.s1 |
Efficiency score of Stage 1 |
$eff.s2 |
Efficiency score of Stage 2 |
$v.s1 |
Weight attached to input in Stage 1 |
$u.s1 |
Weight attached to output in Stage 1 |
$p |
Weight attached to intermediate product |
$w.s1 |
Free variable for scaling in Stage 1 |
$v.s2 |
Weight attached to input in Stage 2 |
$u.s2 |
Weight attached to output in Stage 2 |
$w.s2 |
Free variable for scaling in Stage 2 |
Author(s)
Dong-Joon Lim, Ph.D.
References
Kao, Chiang, and Shiuh-Nan Hwang. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan." European journal of operational research 185.1 (2008): 418-429.
Cook, Wade D., Liang Liang, and Joe Zhu. "Measuring performance of two-stage network structures by DEA: a review and future perspective." Omega 38.6 (2010): 423-430.
Li, Yongjun, Yao Chen, Liang Liang, and Jianhui Xie. "DEA models for extended two-stage network structures." Omega 40.5 (2012): 611-618.
Lee, Hsuan-Shih. "Efficiency decomposition of the network DEA in variable returns to scale: An additive dissection in losses." Omega 100 (2021): 102212.
See Also
dm.dea
Distance measure using DEA
dm.dynamic.bc
Dynamic DEA for intertemporal budgeting
Examples
# Reproduce Table 2 in W.D. Cook et al.(2010)
# ready
X <- data.frame(x1 = c(1178744,1381822,1177494,601320,6699063,2627707,1942833,3789001,
1567746,1303249,1962448,2592790,2609941,1396002,2184944,1211716,
1453797,757515,159422,145442,84171,15993,54693,163297,1544215),
x2 = c(673512,1352755,592790,594259,3531614,668363,1443100,1873530,
950432,1298470,672414,650952,1368802,988888,651063,415071,
1085019,547997,182338,53518,26224,10502,28408,235094,828963))
Z <- data.frame(z1 = c(7451757,10020274,4776548,3174851,37392862,9747908,10685457,17267266,
11473162,8210389,7222378,9434406,13921464,7396396,10422297,5606013,
7695461,3631484,1141950,316829,225888,52063,245910,476419,7832893),
z2 = c(856735,1812894,560244,371863,1753794,952326,643412,1134600,
546337,504528,643178,1118489,811343,465509,749893,402881,
342489,995620,483291,131920,40542,14574,49864,644816,667964))
Y <- data.frame(y1 = c(984143,1228502,293613,248709,7851229,1713598,2239593,3899530,
1043778,1697941,1486014,1574191,3609236,1401200,3355197,854054,
3144484,692731,519121,355624,51950,82141,0.1,142370,1602873),
y2 = c(681687,834754,658428,177331,3925272,415058,439039,622868,
264098,554806,18259,909295,223047,332283,555482,197947,
371984,163927,46857,26537,6491,4181,18980,16976,477733))
# go
res.co <- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, type = "co")
res.nc.LF <- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, type = "nc", leader = "1st")
res.nc.FL <- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, type = "nc", leader = "2nd")
# print
data.frame(CO.s1 = res.co$eff.s1,
CO.s2 = res.co$eff.s2,
NC.LF.s1 = res.nc.LF$eff.s1,
NC.LF.s2 = res.nc.LF$eff.s2,
NC.FL.s1 = res.nc.FL$eff.s1,
NC.FL.s2 = res.nc.FL$eff.s2)