sim3 {DImodels}R Documentation

The Simulated "sim3" Dataset

Description

The sim3 dataset was simulated. There are two treatments and nine species that vary in proportions (p1 - p9). It is assumed that species 1 to 5 come from functional group 1, species 6 and 7 from functional group 2 and species 8 and 9 from functional group 3. The response was simulated assuming that there were species identity effects and functional group specific interaction effects.

Usage

data(sim3)

Format

A data frame with 412 observations on the following 13 variables:

community

A numeric vector identifying each unique community, i.e., two rows with the same community value also share the same set of p1 to p9 values.

richness

A numeric vector identifying the number of species in the initial composition.

treatment

A factor with levels A or B.

p1

A numeric vector indicating the initial proportion of species 1.

p2

A numeric vector indicating the initial proportion of species 2.

p3

A numeric vector indicating the initial proportion of species 3.

p4

A numeric vector indicating the initial proportion of species 4.

p5

A numeric vector indicating the initial proportion of species 5.

p6

A numeric vector indicating the initial proportion of species 6.

p7

A numeric vector indicating the initial proportion of species 7.

p8

A numeric vector indicating the initial proportion of species 8.

p9

A numeric vector indicating the initial proportion of species 9.

response

A numeric vector giving the simulated response variable.

Details

What are Diversity-Interactions (DI) models?

Diversity-Interactions (DI) models (Kirwan et al 2009) are a set of tools for analysing and interpreting data from experiments that explore the effects of species diversity on community-level responses. We strongly recommend that users read the short introduction to Diversity-Interactions models (available at: DImodels). Further information on Diversity-Interactions models is also available in Kirwan et al 2009 and Connolly et al 2013.

Parameter values for the simulation

DI models take the general form of:

y = Identities + Interactions + Structures + \epsilon

where y is a community-level response, the Identities are the effects of species identities and enter the model as individual species proportions at the beginning of the time period, the Interactions are the interactions among the species proportions, while Structures include other experimental structures such as blocks, treatments or density.

The dataset sim3 was simulated with:

References

Connolly J, T Bell, T Bolger, C Brophy, T Carnus, JA Finn, L Kirwan, F Isbell, J Levine, A Lüscher, V Picasso, C Roscher, MT Sebastia, M Suter and A Weigelt (2013) An improved model to predict the effects of changing biodiversity levels on ecosystem function. Journal of Ecology, 101, 344-355.

Kirwan L, J Connolly, JA Finn, C Brophy, A Lüscher, D Nyfeler and MT Sebastia (2009) Diversity-interaction modelling - estimating contributions of species identities and interactions to ecosystem function. Ecology, 90, 2032-2038.

Examples


####################################
## Code to simulate the sim3 dataset
  


## Simulate dataset sim3 with 9 species, three functional groups and two levels of a treatment.
## The species 1-5 are FG1, species 6-7 are FG2 and species 8-9 are FG3. 
## Assume ID effects and the FG interaction model, with a treatment (factor with two levels).

## Set up proportions
  data("design_a")
  sim3a <- design_a

# Replicate the design over two treatments
  sim3b <- sim3a[rep(seq_len(nrow(sim3a)), each = 2), ]
  sim3c <- data.frame(treatment = factor(rep(c("A","B"), times = 206))) 
  sim3 <- data.frame(sim3b[,1:2], sim3c, sim3b[,3:11])
  row.names(sim3) <- NULL

## Create the functional group interaction variables
  FG_matrix <- DI_data(prop = 4:12, FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"),
                        data = sim3, what = "FG")
  sim3 <- data.frame(sim3, FG_matrix)

## To simulate the response, first create a matrix of predictors that includes p1-p9, the treatment 
##  and the interaction variables. 
  X <- model.matrix(~ p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + treatment 
                    + bfg_FG1_FG2 + bfg_FG1_FG3 + bfg_FG2_FG3 
                    + wfg_FG1 + wfg_FG2 + wfg_FG3 -1, data=sim3)

## Create a vector of 'known' parameter values for simulating the response.
## The first nine are the p1-p9 parameters, and the second set of two are the treatment effects 
##   and the third set of six are the interaction parameters.
  sim3_coeff <- c(10,9,8,7,11, 6,5, 8,9,   3,0,      4,9,3, 2,3,1)

## Create response and add normally distributed error 
  sim3$response <- as.numeric(X %*% sim3_coeff)
  set.seed(1657914)
  r <- rnorm(n = 412, mean = 0, sd = 1.2)
  sim3$response <- round(sim3$response + r, digits = 3)

  sim3[,13:18] <- NULL




###########################
## Analyse the sim3 dataset

## Load the sim3 data
  data(sim3)
## View the first few entries
  head(sim3)
## Explore the variables in sim3
  str(sim3)

## Check characteristics of sim3
  hist(sim3$response)
  summary(sim3$response)
  plot(sim3$richness, sim3$response)
  plot(sim3$p1, sim3$response)
  plot(sim3$p2, sim3$response)
  plot(sim3$p3, sim3$response)
  plot(sim3$p4, sim3$response)
  plot(sim3$p5, sim3$response)
  plot(sim3$p6, sim3$response)
  plot(sim3$p7, sim3$response)
  plot(sim3$p8, sim3$response)
  plot(sim3$p9, sim3$response)


## What model fits best? Selection using F-test in autoDI  
  auto1 <- autoDI(y = "response", prop = 4:12, treat = "treatment", 
                  FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), data = sim3, 
                  selection = "Ftest")
  summary(auto1)


## Fit the functional group model, with treatment, using DI and the FG tag
  m1 <- DI(y = "response", prop = 4:12, 
           FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), treat = "treatment", 
           DImodel = "FG", data = sim3)
  summary(m1)
  plot(m1)


## Check goodness-of-fit using a half-normal plot with a simulated envelope
  library(hnp)
  hnp(m1)


## Create the functional group interactions and store them in a new dataset
  FG_matrix <- DI_data(prop = 4:12, FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), 
                        data = sim3, what = "FG")
  sim3a <- data.frame(sim3, FG_matrix)

## Test if the FG interaction variables interact with treatment using 'extra_formula'
  m2 <- DI(y = "response", prop = 4:12, 
           FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"),
           treat = "treatment", DImodel = "FG", extra_formula = ~ bfg_FG1_FG2:treatment 
           + bfg_FG1_FG3:treatment + bfg_FG2_FG3:treatment + wfg_FG1:treatment + wfg_FG2:treatment 
           + wfg_FG3:treatment, data = sim3a)
  summary(m2)

## Fit the functional group model using DI and custom_formula
## Set up a dummy variable for treatment first (required).
  sim3a$treatmentA <- as.numeric(sim3a$treatment=="A")
  m3 <- DI(y = "response", custom_formula = response ~ 0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 
           + p9 + treatmentA + bfg_FG1_FG2 + bfg_FG1_FG3 + bfg_FG2_FG3 + wfg_FG1 + wfg_FG2 
           + wfg_FG3, data = sim3a)
  summary(m3)

[Package DImodels version 1.1 Index]