predict.DIFtree {DIFtree} | R Documentation |
Prediction from fitted Item focussed Trees
Description
The function returns predictions of item parameters obtained by item focussed recursive partitioning in dichotomous or polytomous items.
Usage
## S3 method for class 'DIFtree'
predict(object, item, newdata, ...)
Arguments
object |
Object of class |
item |
Number of the item, for which the prediction shall be returned |
newdata |
New data.frame, for which the prediction shall be returned |
... |
Further arguments passed to or from other methods |
Details
For "Rasch"
model the function returns the predicted item difficulty.
For "Logistic"
models the function returns the predicted intercept and/or slope.
For "PCM"
the function returns the predicted threshold parameters.
Author(s)
Moritz Berger <moritz.berger@imbie.uni-bonn.de>
http://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
References
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees, Journal of Educational and Behavioral Statistics 41(6), 559-592.
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
See Also
DIFtree
, plot.DIFtree
, summary.DIFtree
Examples
data(data_sim_Rasch)
Y <- data_sim_Rasch[,1]
X <- data_sim_Rasch[,-1]
Xnew <- data.frame("x1"=c(0,1),"x2"=c(-1.1,2.5),"x3"=c(1,0),"x4"=c(-0.2,0.7))
## Not run:
mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE)
predict(mod,item=1,Xnew)
## End(Not run)