AIC {DGLMExtPois} | R Documentation |
AIC and BIC for hyper-Poisson Fits
Description
Computes the Akaike's information criterion or the Schwarz's Bayesian criterion for hyper-Poisson Fits
Usage
## S3 method for class 'glm_hP'
AIC(object, ..., k = 2)
## S3 method for class 'glm_hP'
BIC(object, ...)
Arguments
object |
an object of class |
... |
optionally more fitted model objects. |
k |
numeric, the penalty per parameter to be used; the
default |
Examples
## Fit a hyper-Poisson model
Bids$size.sq <- Bids$size ^ 2
fit <- glm.hP(formula.mu = numbids ~ leglrest + rearest + finrest +
whtknght + bidprem + insthold + size + size.sq + regulatn,
formula.gamma = numbids ~ 1, data = Bids)
## Obtain its AIC and BIC
AIC(fit)
BIC(fit)
[Package DGLMExtPois version 0.2.3 Index]