IprMh {DFIT} | R Documentation |
Mantel Haenszel for Item parameter replication
Description
Calculates the Mantel-Haenszel theoretical parameter under IRT assumptions on a list of item parameters such as those produced by the Ipr function
Usage
IprMh(
itemParameterList,
irtModel = "2pl",
focalDistribution = "norm",
focalDistrExtra = list(mean = 0, sd = 1),
referenceDistribution = "norm",
referenceDistrExtra = list(mean = 0, sd = 1),
groupRatio = 1,
subdivisions = 5000,
logistic = TRUE
)
Arguments
itemParameterList |
A list where each element is a list containing "focal" and "reference" item Parameters. Item parameters are assumed to be on the same scale. Item parameters for each group should be a matrix with nrow equal to the number of items |
irtModel |
A string stating the irtModel to be used. Should be one of "1pl", "2pl", "3pl", "grm" or "pcm". |
focalDistribution |
A string stating the distribution assumed for the focal group. |
focalDistrExtra |
A list stating the extra parameters needed by the focal distribution function. |
referenceDistribution |
A string stating the distribution assumed for the reference group. |
referenceDistrExtra |
A list stating the extra parameters needed by the reference distribution function. |
groupRatio |
A positive value indicating how many members of the reference group are expected for each member of the focal group. |
subdivisions |
A numeric value indicating the number of subdivisions for numerical integration. |
logistic |
A logical value stating if the IRT model will use the logistic or the normal metric. Defaults to using the logistic metric by fixing the D constant to 1. If FALSE the constant is set to 1.702 so that the normal metric is used. |
Value
mh A numeric matrix with the Mantel Haenszel values for all the item parameter in each set of itemParameterList
Author(s)
Victor H. Cervantes <vhcervantesb at unal.edu.co>
References
Oshima, T., Raju, N. & Nanda, A. (2006). A new method for assessing the statistical significance in the Differential Functioning of Items and Tests (DFIT) framework. Journal of educational measurement, 43(1), 1–17. doi:10.1111/j.1745-3984.2006.00001.x
Roussos, L., Schnipke, D. & Pashley, P. (1999). A generalized formula for the Mantel-Haenszel Differential Item Functioning parameter. Journal of educational and behavioral statistics, 24(3), 293–322. doi:10.3102/10769986024003293
Examples
# # Not run
# #
# # data(dichotomousItemParameters)
# # threePlParameters <- dichotomousItemParameters
# # isNot3Pl <- ((dichotomousItemParameters[['focal']][, 3] == 0) |
# # (dichotomousItemParameters[['reference']][, 3] == 0))
# #
# # threePlParameters[['focal']] <- threePlParameters[['focal']][!isNot3Pl, ]
# # threePlParameters[['reference']] <- threePlParameters[['reference']][!isNot3Pl, ]
# # threePlParameters[['focal']][, 3] <- threePlParameters[['focal']][, 3] + 0.1
# # threePlParameters[['reference']][, 3] <- threePlParameters[['reference']][, 3] + 0.1
# # threePlParameters[['focal']][, 2] <- threePlParameters[['focal']][, 2] + 1.5
# # threePlParameters[['reference']][, 2] <- threePlParameters[['reference']][, 2] + 1.5
# # threePlParameters[['focal']] <- threePlParameters[['focal']][-c(12, 16, 28), ]
# # threePlParameters[['reference']] <- threePlParameters[['reference']][-c(12, 16, 28), ]
# #
# # threePlAse <- list()
# # threePlAse[["focal"]] <- AseIrt(itemParameters = threePlParameters[["focal"]],
# # logistic = TRUE,
# # sampleSize = 10000,
# # irtModel = "3pl")
# # threePlAse[["reference"]] <- AseIrt(itemParameters = threePlParameters[["reference"]],
# # logistic = TRUE,
# # sampleSize = 10000,
# # irtModel = "3pl")
# #
# # set.seed(41568)
# # threePlIpr <- Ipr(itemParameters = threePlParameters, itemCovariances = threePlAse,
# # nReplicates = 100)
# #
# # threePlMhIpr <- IprMh(itemParameterList = threePlIpr, irtModel = '3pl', logistic = TRUE)