JDEoptim {DEoptimR} | R Documentation |
Bound-Constrained and Nonlinear Constrained Single-Objective Optimization via Differential Evolution
Description
A bespoke implementation of the ‘jDE’ variant by Brest et al. (2006) doi:10.1109/TEVC.2006.872133.
Usage
JDEoptim(lower, upper, fn,
constr = NULL, meq = 0, eps = 1e-05,
NP = 10*length(lower), Fl = 0.1, Fu = 1,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
jitter_factor = 0.001,
tol = 1e-15, maxiter = 200*length(lower), fnscale = 1,
compare_to = c("median", "max"),
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
details = FALSE, ...)
Arguments
lower , upper |
numeric vectors of lower and upper
bounds for the parameters to be optimized over. Must be finite
( |
fn |
(nonlinear) objective |
constr |
an optional |
meq |
an optional positive integer specifying that the first
|
eps |
maximal admissible constraint violation for equality constraints.
An optional real vector of small positive tolerance values with length
|
NP |
an optional positive integer giving the number of candidate
solutions in the randomly distributed initial population. Defaults to
|
Fl |
an optional scalar which represents the minimum value that the
scaling factor |
Fu |
an optional scalar which represents the maximum value that
the scaling factor |
tau_F |
an optional scalar which represents the probability that
the scaling factor |
tau_CR |
an optional constant value which represents the probability
that the crossover probability |
tau_pF |
an optional scalar which represents the probability that
the mutation probability |
jitter_factor |
an optional tuning constant for jitter.
If |
tol |
an optional positive scalar giving the tolerance for the
stopping criterion. Default is |
maxiter |
an optional positive integer specifying the maximum
number of iterations that may be performed before the algorithm is halted.
Defaults to |
fnscale |
an optional positive scalar specifying the typical
magnitude of |
compare_to |
an optional character string controlling which function
should be applied to the |
add_to_init_pop |
an optional real vector of length |
trace |
an optional logical value indicating if a trace of the
iteration progress should be printed. Default is |
triter |
an optional positive integer giving the frequency of tracing
(every |
details |
an optional logical value. If |
... |
optional additional arguments passed to |
Details
- Overview:
-
The setting of the control parameters of canonical Differential Evolution (DE) is crucial for the algorithm's performance. Unfortunately, when the generally recommended values for these parameters (see, e.g., Storn and Price, 1997) are unsuitable for use, their determination is often difficult and time consuming. The jDE algorithm proposed in Brest et al. (2006) employs a simple self-adaptive scheme to perform the automatic setting of control parameters scale factor
F
and crossover rateCR
.This implementation differs from the original description, most notably in the use of the DE/rand/1/either-or mutation strategy (Price et al., 2005), combination of jitter with dither (Storn, 2008), and the random initialization of
F
andCR
. The mutation operator brings an additional control parameter, the mutation probabilityp_F
, which is self-adapted in the same manner asCR
.As done by jDE and its variants (Brest et al., 2021) each worse parent in the current population is immediately replaced (asynchronous update) by its newly generated better or equal offspring (Babu and Angira, 2006) instead of updating the current population with all the new solutions at the same time as in classical DE (synchronous update).
As the algorithm subsamples via
sample()
which from R version 3.6.0 depends onRNGkind(*, sample.kind)
, exact reproducibility of results from R versions 3.5.3 and earlier requires settingRNGversion("3.5.0")
. In any case, do useset.seed()
additionally for reproducibility! - Constraint Handling:
-
Constraint handling is done using the approach described in Zhang and Rangaiah (2012), but with a different reduction updating scheme for the constraint relaxation value (
\mu
). Instead of doing it once for every generation or iteration, the reduction is triggered for two cases when the constraints only contain inequalities. Firstly, every time a feasible solution is selected for replacement in the next generation by a new feasible trial candidate solution with a better objective function value. Secondly, whenever a current infeasible solution gets replaced by a feasible one. If the constraints include equalities, then the reduction is not triggered in this last case. This constitutes an original feature of the implementation.The performance of any constraint handling technique for metaheuristics is severely impaired by a small feasible region. Therefore, equality constraints are particularly difficult to handle due to the tiny feasible region they define. So, instead of explicitly including all equality constraints in the formulation of the optimization problem, it might prove advantageous to eliminate some of them. This is done by expressing one variable
x_k
in terms of the remaining others for an equality constrainth_j(X) = 0
whereX = [x_1,\ldots,x_k,\ldots,x_d]
is the vector of solutions, thereby obtaining a relationship asx_k = R_{k,j}([x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_d])
. In this way both the variablex_k
and the equality constrainth_j(X) = 0
can be removed altogether from the original optimization formulation, since the value ofx_k
can be calculated during the search process by the relationshipR_{k,j}
. Notice, however, that two additional inequalitiesl_k \le R_{k,j}([x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_d]) \le u_k,
where the values
l_k
andu_k
are the lower and upper bounds ofx_k
, respectively, must be provided in order to obtain an equivalent formulation of the problem. For guidance and examples on applying this approach see Wu et al. (2015).Bound constraints are enforced by the midpoint base approach (see, e.g., Biedrzycki et al., 2019).
- Discrete and Integer Variables:
-
Any DE variant is easily extended to deal with mixed integer nonlinear programming problems using a small variation of the technique presented by Lampinen and Zelinka (1999). Integer values are obtained by means of the
floor()
function only in the evaluation of the objective function and constraints, whereas DE itself still uses continuous variables. Additionally, each upper bound of the integer variables should be added by1
.Notice that the final solution needs to be converted with
floor()
to obtain its integer elements. - Stopping Criterion:
-
The algorithm is stopped if
\frac{\mathrm{compare\_to}\{[\mathrm{fn}(X_1),\ldots,\mathrm{fn}(X_\mathrm{npop})]\} - \mathrm{fn}(X_\mathrm{best})}{\mathrm{fnscale}} \le \mathrm{tol},
where the “best” individual
X_\mathrm{best}
is the feasible solution with the lowest objective function value in the population and the total number of elements in the population,npop
, isNP+NCOL(add_to_init_pop)
. Forcompare_to = "max"
this is the Diff criterion studied by Zielinski and Laur (2008) among several other alternatives, which was found to yield the best results.
Value
A list with the following components:
par |
The best set of parameters found. |
value |
The value of |
iter |
Number of iterations taken by the algorithm. |
convergence |
An integer code. |
and if details = TRUE
:
poppar |
Matrix of dimension |
popcost |
The values of |
Note
It is possible to perform a warm start, i.e., starting from the
previous run and resume optimization, using NP = 0
and the
component poppar
for the add_to_init_pop
argument.
Author(s)
Eduardo L. T. Conceicao mail@eduardoconceicao.org
References
Babu, B. V. and Angira, R. (2006) Modified differential evolution (MDE) for optimization of non-linear chemical processes. Computers and Chemical Engineering 30, 989–1002. doi:10.1016/j.compchemeng.2005.12.020.
Biedrzycki, R., Arabas, J. and Jagodzinski, D. (2019) Bound constraints handling in differential evolution: An experimental study. Swarm and Evolutionary Computation 50, 100453. doi:10.1016/j.swevo.2018.10.004.
Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V. (2006) Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657. doi:10.1109/TEVC.2006.872133.
Brest, J., Maucec, M. S. and Boskovic, B. (2021) Self-adaptive differential evolution algorithm with population size reduction for single objective bound-constrained optimization: Algorithm j21; in 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 817–824. doi:10.1109/CEC45853.2021.9504782.
Lampinen, J. and Zelinka, I. (1999). Mechanical engineering design optimization by differential evolution; in Corne, D., Dorigo, M. and Glover, F., Eds., New Ideas in Optimization. McGraw-Hill, pp. 127–146.
Price, K. V., Storn, R. M. and Lampinen, J. A. (2005) Differential evolution: A practical approach to global optimization. Springer, Berlin, Heidelberg, pp. 117–118. doi:10.1007/3-540-31306-0_2.
Storn, R. (2008) Differential evolution research — Trends and open questions; in Chakraborty, U. K., Ed., Advances in differential evolution. SCI 143, Springer, Berlin, Heidelberg, pp. 11–12. doi:10.1007/978-3-540-68830-3_1.
Storn, R. and Price, K. (1997) Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359. doi:10.1023/A:1008202821328.
Wu, G., Pedrycz, W., Suganthan, P. N. and Mallipeddi, R. (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Applied Soft Computing 37, 774–786. doi:10.1016/j.asoc.2015.09.007.
Zhang, H. and Rangaiah, G. P. (2012) An efficient constraint handling method with integrated differential evolution for numerical and engineering optimization. Computers and Chemical Engineering 37, 74–88. doi:10.1016/j.compchemeng.2011.09.018.
Zielinski, K. and Laur, R. (2008) Stopping criteria for differential evolution in constrained single-objective optimization; in Chakraborty, U. K., Ed., Advances in differential evolution. SCI 143, Springer, Berlin, Heidelberg, pp. 111–138. doi:10.1007/978-3-540-68830-3_4.
See Also
Function DEoptim()
in the DEoptim package
has many more options than JDEoptim()
, but does not allow constraints
in the same flexible manner.
Examples
# NOTE: Examples were excluded from testing
# to reduce package check time.
# Use a preset seed so test values are reproducible.
set.seed(1234)
# Bound-constrained optimization
# Griewank function
#
# -600 <= xi <= 600, i = {1, 2, ..., n}
# The function has a global minimum located at
# x* = (0, 0, ..., 0) with f(x*) = 0. Number of local minima
# for arbitrary n is unknown, but in the two dimensional case
# there are some 500 local minima.
#
# Source:
# Ali, M. Montaz, Khompatraporn, Charoenchai, and
# Zabinsky, Zelda B. (2005).
# A numerical evaluation of several stochastic algorithms
# on selected continuous global optimization test problems.
# Journal of Global Optimization 31, 635-672.
# https://doi.org/10.1007/s10898-004-9972-2
griewank <- function(x) {
1 + crossprod(x)/4000 - prod( cos(x/sqrt(seq_along(x))) )
}
JDEoptim(rep(-600, 10), rep(600, 10), griewank,
tol = 1e-7, trace = TRUE, triter = 50)
# Nonlinear constrained optimization
# 0 <= x1 <= 34, 0 <= x2 <= 17, 100 <= x3 <= 300
# The global optimum is
# (x1, x2, x3; f) = (0, 16.666667, 100; 189.311627).
#
# Source:
# Westerberg, Arthur W., and Shah, Jigar V. (1978).
# Assuring a global optimum by the use of an upper bound
# on the lower (dual) bound.
# Computers and Chemical Engineering 2, 83-92.
# https://doi.org/10.1016/0098-1354(78)80012-X
fcn <-
list(obj = function(x) {
35*x[1]^0.6 + 35*x[2]^0.6
},
eq = 2,
con = function(x) {
x1 <- x[1]; x3 <- x[3]
c(600*x1 - 50*x3 - x1*x3 + 5000,
600*x[2] + 50*x3 - 15000)
})
JDEoptim(c(0, 0, 100), c(34, 17, 300),
fn = fcn$obj, constr = fcn$con, meq = fcn$eq,
tol = 1e-7, trace = TRUE, triter = 50)
# Designing a pressure vessel
# Case A: all variables are treated as continuous
#
# 1.1 <= x1 <= 12.5*, 0.6 <= x2 <= 12.5*,
# 0.0 <= x3 <= 240.0*, 0.0 <= x4 <= 240.0
# Roughly guessed*
# The global optimum is (x1, x2, x3, x4; f) =
# (1.100000, 0.600000, 56.99482, 51.00125; 7019.031).
#
# Source:
# Lampinen, Jouni, and Zelinka, Ivan (1999).
# Mechanical engineering design optimization
# by differential evolution.
# In: David Corne, Marco Dorigo and Fred Glover (Editors),
# New Ideas in Optimization, McGraw-Hill, pp 127-146
pressure_vessel_A <-
list(obj = function(x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3
},
con = function(x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,
0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)
})
JDEoptim(c( 1.1, 0.6, 0.0, 0.0),
c(12.5, 12.5, 240.0, 240.0),
fn = pressure_vessel_A$obj,
constr = pressure_vessel_A$con,
tol = 1e-7, trace = TRUE, triter = 50)
# Mixed integer nonlinear programming
# Designing a pressure vessel
# Case B: solved according to the original problem statements
# steel plate available in thicknesses multiple
# of 0.0625 inch
#
# wall thickness of the
# shell 1.1 [18*0.0625] <= x1 <= 12.5 [200*0.0625]
# heads 0.6 [10*0.0625] <= x2 <= 12.5 [200*0.0625]
# 0.0 <= x3 <= 240.0, 0.0 <= x4 <= 240.0
# The global optimum is (x1, x2, x3, x4; f) =
# (1.125 [18*0.0625], 0.625 [10*0.0625],
# 58.29016, 43.69266; 7197.729).
pressure_vessel_B <-
list(obj = function(x) {
x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3
},
con = function(x) {
x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,
0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)
})
res <- JDEoptim(c( 18, 10, 0.0, 0.0),
c(200+1, 200+1, 240.0, 240.0),
fn = pressure_vessel_B$obj,
constr = pressure_vessel_B$con,
tol = 1e-7, trace = TRUE, triter = 50)
res
# Now convert to integer x1 and x2
c(floor(res$par[1:2]), res$par[3:4])