EM {DEM} | R Documentation |
The EM algorithm is used to solve the parameter estimation of multivariate Gaussian mixture model.
Description
The EM algorithm is used to solve the parameter estimation of multivariate Gaussian mixture model.
Usage
EM(y, alpha0, mu0, sigma0, i, epsilon)
Arguments
y |
is a data matrix |
alpha0 |
is the initial value of the mixing weight |
mu0 |
is the initial value of the mean |
sigma0 |
is the initial value of the covariance |
i |
is the number of iterations |
epsilon |
is the threshold value |
Value
EMalpha,EMmu,EMsigma,EMtime
Examples
library(mvtnorm)
alpha1= c(rep(1/4,4))
mu1=matrix(0,nrow=4,ncol=4)
for (k in 1:4){
mu1[4,]=c(runif(4,(k-1)*3,k*3))
}
sigma1=list()
for (k in 1:4){
sigma1[[k]]= diag(4)*0.1
}
y= matrix(0,nrow=200,ncol=4)
for(k in 1:4){
y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4,mu1[k,],sigma1[[k]])
}
alpha0= alpha1
mu0=mu1
sigma0=sigma1
i=10
epsilon=0.005
EM(y,alpha0,mu0,sigma0,i,epsilon)
[Package DEM version 0.0.0.2 Index]