DMOEM {DEM} | R Documentation |
The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
Description
The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
Usage
DMOEM(
y,
M,
seed,
alpha0,
mu0,
sigma0,
MOEMalpha0,
MOEMmu0,
MOEMsigma0,
omega,
i,
epsilon
)
Arguments
y |
is a data matrix |
M |
is the number of subsets |
seed |
is the recommended way to specify seeds |
alpha0 |
is the initial value of the mixing weight under the EM algorithm |
mu0 |
is the initial value of the mean under the EM algorithm |
sigma0 |
is the initial value of the covariance under the EM algorithm |
MOEMalpha0 |
is the initial value of the mixing weight under the MOEM algorithm |
MOEMmu0 |
is the initial value of the mean under the MOEM algorithm |
MOEMsigma0 |
is the initial value of the covariance under the MOEM algorithm |
omega |
is the overrelaxation factor |
i |
is the number of iterations |
epsilon |
is the threshold value |
Value
DMOEMalpha,DMOEMmu,DMOEMsigma,DMOEMtime
Examples
library(mvtnorm)
alpha1= c(rep(1/4,4))
mu1=matrix(0,nrow=4,ncol=4)
for (k in 1:4){
mu1[4,]=c(runif(4,(k-1)*3,k*3))
}
sigma1=list()
for (k in 1:4){
sigma1[[k]]= diag(4)*0.1
}
y= matrix(0,nrow=200,ncol=4)
for(k in 1:4){
y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4,mu1[k,],sigma1[[k]])
}
M=5
seed=123
alpha0= alpha1
mu0=mu1
sigma0=sigma1
MOEMalpha0= alpha1
MOEMmu0=mu1
MOEMsigma0=sigma1
omega=0.15
i=10
epsilon=0.005
DMOEM(y,M,seed,alpha0,mu0,sigma0,MOEMalpha0,MOEMmu0,MOEMsigma0,omega,i,epsilon)
[Package DEM version 0.0.0.2 Index]