| DEM2 {DEM} | R Documentation | 
The DEM2 algorithm is a one-step average algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
Description
The DEM2 algorithm is a one-step average algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
Usage
DEM2(y, M, seed, alpha0, mu0, sigma0, i, epsilon)
Arguments
y | 
 is a data matrix  | 
M | 
 is the number of subsets  | 
seed | 
 is the recommended way to specify seeds  | 
alpha0 | 
 is the initial value of the mixing weight  | 
mu0 | 
 is the initial value of the mean  | 
sigma0 | 
 is the initial value of the covariance  | 
i | 
 is the number of iterations  | 
epsilon | 
 is the threshold value  | 
Value
DEM2alpha,DEM2mu,DEM2sigma,DEM2time
Examples
library(mvtnorm)
alpha1= c(rep(1/4,4)) 
mu1=matrix(0,nrow=4,ncol=4) 
for (k in 1:4){
mu1[4,]=c(runif(4,(k-1)*3,k*3)) 
}
sigma1=list()
for (k in 1:4){
sigma1[[k]]= diag(4)*0.1
}
y= matrix(0,nrow=200,ncol=4) 
for(k in 1:4){
y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4,mu1[k,],sigma1[[k]]) 
}
M=5
seed=123
alpha0= alpha1
mu0=mu1
sigma0=sigma1
i=10
epsilon=0.005
DEM2(y,M,seed,alpha0,mu0,sigma0,i,epsilon)
[Package DEM version 0.0.0.2 Index]