mse {DEEVD} | R Documentation |
Calculate Mean Square Error( MSE) by using Extreme value distributions
Description
This function calculates the mean squared error (MSE) by using user specified kernel. But distribution of vector should be Exponential, Gamma, Gumbel, Frechet or Weibull. Any other choice of distribution will result NaN
. This function is simillar to function mse
in DELTD, but here more distributions are available for distribution vector.
Usage
mse(kernel, type)
Arguments
kernel |
type of kernel which is to be used |
type |
mention distribution of vector.If exponential distribution then use |
Value
Mean Squared Error (MSE)
Author(s)
Javaria Ahmad Khan, Atif Akbar
References
Salha, R. B., El Shekh Ahmed, H. I., & Alhoubi, I. M. 2014. Hazard Rate Function Estimation Using Weibull Kernel. Open Journal of Statistics 4 (08), 650-661.
Khan, J. A., & Akbar, A. 2021. Density Estimation Using Gumbel Kernel Estimator. Open Journal of Statistics 11 (2), 319-328.
Examples
y <- rexp(100, 1)
xx <- seq(min(y) + 0.05, max(y), length = 500)
h <- 2
gr <- Gumbel(x = xx, y = y, k = 200, h = h)
mse(kernel = gr, type = "Exp")
## if distribution is other than mentioned \code{type} is used then NaN will be produced.
## Not run:
mse(kernel = gr, type ="Beta")
## End(Not run)