DEMCMC {DEBBI} | R Documentation |
DEMCMC
Description
Sample from posterior using Differential Evolution Markov Chain Monte Carlo
Usage
DEMCMC(LogPostLike, control_params = AlgoParamsDEMCMC(), ...)
Arguments
LogPostLike |
function whose first argument is an n_params-dimensional model parameter vector and returns (scalar) sum of log prior density and log likelihood for the parameter vector. |
control_params |
control parameters for DEMCMC algorithm. see |
... |
additional arguments to pass LogPostLike |
Value
list contain posterior samples from DEMCMC in a 'n_samples_per_chain' by 'n_chains' by n_params array and the log posterior likelihood of each sample in a 'n_samples_per_chain' by 'n_chains' array.
Examples
# simulate from model
dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE)
#
# list parameter names
param_names_example <- c("mu_1", "mu_2")
# log posterior likelihood function = log likelihood + log prior | returns a scalar
LogPostLikeExample <- function(x, data, param_names) {
out <- 0
names(x) <- param_names
# log prior
out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE))
out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE))
# log likelihoods
out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE))
out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE))
return(out)
}
# Sample from posterior
DEMCMC(
LogPostLike = LogPostLikeExample,
control_params = AlgoParamsDEMCMC(
n_params = length(param_names_example),
n_iter = 1000,
n_chains = 12
),
data = dataExample,
param_names = param_names_example
)
[Package DEBBI version 0.1.0 Index]