AlgoParamsDEVI {DEBBI} | R Documentation |
AlgoParamsDEVI
Description
get control parameters for DEVI function
Usage
AlgoParamsDEVI(
n_params,
param_names = NULL,
n_chains = NULL,
n_iter = 1000,
init_sd = 0.01,
init_center = 0,
n_cores_use = 1,
step_size = NULL,
jitter_size = 1e-06,
parallel_type = "none",
use_QMC = TRUE,
purify = NULL,
quasi_rand_seq = "halton",
n_samples_ELBO = 10,
LRVB_correction = TRUE,
n_samples_LRVB = 25,
neg_inf = -750,
thin = 1,
burnin = 0,
return_trace = FALSE,
crossover_rate = 1
)
Arguments
n_params |
number of free parameters estimated |
param_names |
optional vector of parameter names |
n_chains |
number of particle chains used for optimization, 3*n_params is the default value |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params). |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
use_QMC |
logical, if true, a quasi-Monte Carlo estimator is used to estimate ELBO during optimization. default is TRUE. |
purify |
an integer, every 'purify'-th iteration, the Monte Carlo estimator of the ELBO is recalculated. This can help deal with noisy and outlier estimates of the ELBO. Default value is 25. If use_QMC is TRUE, purification is disabled as it is redundant. |
quasi_rand_seq |
type of low discrepancy sequence used for quasi Monte Carlo integration, either 'sobol' or 'halton'. LRVB correction always use QMC. Default is 'sobol'. |
n_samples_ELBO |
number of samples used for the Monte Carlo estimator of the ELBO (the objective function). default is 10. |
LRVB_correction |
logical, if true, LRVB covariance correction (Giordano, Brodderick, & Jordan 2018; Galdo, Bahg, & Turner 2020) is attempted. |
n_samples_LRVB |
number of samples used for LRVB correction. default is 25. |
neg_inf |
if density for a given value of theta is numerically 0 for q, this value is assigned for log density. This helps with numeric stability of algorithm. Default value is -750. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running algorithm for longer. |
burnin |
number of initial iterations to discard. Default value is 0. |
return_trace |
logical, if true, function returns particle trajectories. This is helpful for diagnosing convergence or debugging model code. Function will return an iteration/thin $x$ n_chains $x$ n_params array and the estimated ELBO of each particle in a iteration/thin x n_chains array. |
crossover_rate |
number on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution. |
Value
list of control parameters for the DEVI function