AlgoParamsDEMAP {DEBBI} | R Documentation |
AlgoParamsDEMAP
Description
get control parameters for DEMAP function
Usage
AlgoParamsDEMAP(
n_params,
n_chains = NULL,
n_iter = 1000,
init_sd = 0.01,
init_center = 0,
n_cores_use = 1,
step_size = NULL,
jitter_size = 1e-06,
crossover_rate = 1,
parallel_type = "none",
return_trace = FALSE,
thin = 1
)
Arguments
n_params |
number of free parameters estimated |
n_chains |
number of particle chains, 3*n_params is the default value |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector that determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params). |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
crossover_rate |
number on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
return_trace |
logical, if true, function returns particle trajectories. This is helpful for diagnosing convergence or debugging model code. Function will return an iteration/thin $x$ n_chains $x$ n_params array and the estimated ELBO of each particle in a iteration/thin x n_chains array. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running chains for longer. |
Value
list of control parameters for the DEMAP function