dd_ML {DDD} | R Documentation |
Maximization of the loglikelihood under a diversity-dependent diversification model
Description
This function computes the maximum likelihood estimates of the parameters of a diversity-dependent diversification model for a given set of phylogenetic branching times. It also outputs the corresponding loglikelihood that can be used in model comparisons.
Usage
dd_ML(
brts,
initparsopt = initparsoptdefault(ddmodel, brts, missnumspec),
idparsopt = 1:length(initparsopt),
idparsfix = (1:(3 + (ddmodel == 5)))[-idparsopt],
parsfix = parsfixdefault(ddmodel, brts, missnumspec, idparsopt),
res = 10 * (1 + length(brts) + missnumspec),
ddmodel = 1,
missnumspec = 0,
cond = 1,
btorph = 1,
soc = 2,
tol = c(0.001, 1e-04, 1e-06),
maxiter = 1000 * round((1.25)^length(idparsopt)),
changeloglikifnoconv = FALSE,
optimmethod = "subplex",
num_cycles = 1,
methode = "analytical",
verbose = FALSE
)
Arguments
brts |
A set of branching times of a phylogeny, all positive |
initparsopt |
The initial values of the parameters that must be optimized |
idparsopt |
The ids of the parameters that must be optimized, e.g. 1:3
for intrinsic speciation rate, extinction rate and carrying capacity. The
ids are defined as follows: |
idparsfix |
The ids of the parameters that should not be optimized, e.g. c(1,3) if lambda and K should not be optimized, but only mu. In that case idparsopt must be 2. The default is to fix all parameters not specified in idparsopt. |
parsfix |
The values of the parameters that should not be optimized |
res |
Sets the maximum number of species for which a probability must be computed, must be larger than 1 + length(brts) |
ddmodel |
Sets the model of diversity-dependence: |
missnumspec |
The number of species that are in the clade but missing in the phylogeny |
cond |
Conditioning: |
btorph |
Sets whether the likelihood is for the branching times (0) or the phylogeny (1) |
soc |
Sets whether stem or crown age should be used (1 or 2) |
tol |
Sets the tolerances in the optimization. Consists of: |
maxiter |
Sets the maximum number of iterations in the optimization |
changeloglikifnoconv |
if TRUE the loglik will be set to -Inf if ML does not converge |
optimmethod |
Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions) |
num_cycles |
the number of cycles of opimization. If set at Inf, it will do as many cycles as needed to meet the tolerance set for the target function. |
methode |
The method used to solve the master equation, default is 'analytical' which uses matrix exponentiation; alternatively numerical ODE solvers can be used, such as 'odeint::runge_kutta_cash_karp54'. These were used in the package before version 3.1. |
verbose |
Show the parameters and loglikelihood for every call to the loglik function |
Details
The output is a dataframe containing estimated parameters and maximum loglikelihood. The computed loglikelihood contains the factor q! m! / (q + m)! where q is the number of species in the phylogeny and m is the number of missing species, as explained in the supplementary material to Etienne et al. 2012.
Value
lambda |
gives the maximum likelihood estimate of lambda |
mu |
gives the maximum likelihood estimate of mu |
K |
gives the maximum likelihood estimate of K |
r |
(only if ddmodel == 5) gives the ratio of linear dependencies in speciation and extinction rates |
loglik |
gives the maximum loglikelihood |
df |
gives the number of estimated parameters, i.e. degrees of feedom |
conv |
gives a message on convergence of optimization; conv = 0 means convergence |
Author(s)
Rampal S. Etienne & Bart Haegeman
References
- Etienne, R.S. et al. 2012, Proc. Roy. Soc. B 279: 1300-1309,
doi: 10.1098/rspb.2011.1439
- Etienne, R.S. & B. Haegeman 2012. Am. Nat.
180: E75-E89, doi: 10.1086/667574
See Also
dd_loglik
, dd_SR_ML
,
dd_KI_ML
,
Examples
cat("Estimating the intrinsic speciation rate lambda and the carrying capacity K")
cat("for a fixed extinction rate of 0.1, conditioning on clade survival and two missing species:")
brts = 1:5
dd_ML(brts = brts,initparsopt = c(1.3078,7.4188), idparsopt = c(1,3), parsfix = 0.1,
cond = 1, missnumspec = 2, tol = c(1E-3,1E-3,1E-4), optimmethod = 'simplex')