whittermore.boot {DCluster} | R Documentation |
Generate Bootstrap Replicates of Whittermore's Statistic
Description
Generate bootstrap replicates of Whittermore's statistic by means of function boot from boot library. Notice that these functions should not be used separately but as argument statistic when calling function boot.
whittermore.boot is used to perform a non-parametric bootstrap
whittermore.pboot is used when using parametric bootstrap.
Usage
whittermore.boot(data, i, ...)
whittermore.pboot(...)
Arguments
data |
A dataframe with the data as explained in DCluster. |
i |
Permutation generated by the non-parametric bootstrap procedure. |
... |
Additional arguments passed when performing a bootstrap. |
Value
Both functions return the value of the statistic.
References
Whittermore, A. S. and Friend, N. and Byron, W. and Brown, J. R. and Holly, E. A. (1987). A test to detect clusters of disease. Biometrika 74, 631-635.
See Also
DCluster, boot, whittermore, whittermore.stat
Examples
library(boot)
library(spdep)
data(nc.sids)
sids<-data.frame(Observed=nc.sids$SID74)
sids<-cbind(sids, Expected=nc.sids$BIR74*sum(nc.sids$SID74)/sum(nc.sids$BIR74) )
sids<-cbind(sids, x=nc.sids$x, y=nc.sids$y)
#Calculate neighbours based on distance
coords<-as.matrix(sids[,c("x", "y")])
dlist<-dnearneigh(coords, 0, Inf)
dlist<-include.self(dlist)
dlist.d<-nbdists(dlist, coords)
#Calculate weights. They are globally standardised but it doesn't
#change significance.
col.W.whitt<-nb2listw(dlist, glist=dlist.d, style="C")
niter<-100
#Permutation model
wt.boot<-boot(sids, statistic=whittermore.boot, R=niter, listw=col.W.whitt,
zero.policy=TRUE)
plot(wt.boot)#Display results
#Multinomial model
wt.mboot<-boot(sids, statistic=whittermore.pboot, sim="parametric",
ran.gen=multinom.sim, R=niter, listw=col.W.whitt, zero.policy=TRUE)
plot(wt.mboot)#Display results
#Poisson model
wt.pboot<-boot(sids, statistic=whittermore.pboot, sim="parametric",
ran.gen=poisson.sim, R=niter, listw=col.W.whitt, zero.policy=TRUE)
plot(wt.pboot)#Display results
#Poisson-Gamma model
wt.pgboot<-boot(sids, statistic=whittermore.pboot, sim="parametric",
ran.gen=negbin.sim, R=niter, listw=col.W.whitt, zero.policy=TRUE)
plot(wt.pgboot)#Display results