summary.sarma {DCSmooth} | R Documentation |
Summarizing SARMA/SFARIMA Estimation or Simulation
Description
summary
method for class "sarma" or "sfarima"
Usage
## S3 method for class 'sarma'
summary(object, ...)
## S3 method for class 'sfarima'
summary(object, ...)
Arguments
object |
an object of class "sarma" or "sfarima", usually a result of a
call to the estimation functions |
... |
Additional arguments passed to the |
Value
The function summary.sarma
/summary.sfarima
returns an
object of class summary_sarma
including
model | estimated or simulated model parameters including
coefficient matrices ar , ma , the error term standard deviation
sigma and the vector of long memory parameters d
(summary.sarma only) |
model_order | order of the estimated/simulated model computed from
the matrices ar , ma . |
stnry | a flag for stationarity of the short memory part. |
subclass | a flag indicating whether the object inherits from an
estimation (subclass = "est" ) or simulation procedure
(subclass = "sim" ). |
Details
summary.sarma
/summary.sfarima
strips an object of class
"sarma"/"sfarima" from all large matrices (Y
, innov
), allowing
for easier handling of meta-statistics of the bandwidth selection procedure.
print.summary_sarma
/print.summary_sarma
returns a list of
summary statistics from the estimation or simulation procedure.
See Also
sarma.est, sfarima.est, sarma.sim,
sfarima.sim
Examples
# SARMA Simulation and Estimation
ma = matrix(c(1, 0.2, 0.4, 0.1), nrow = 2, ncol = 2)
ar = matrix(c(1, 0.5, -0.1, 0.1), nrow = 2, ncol = 2)
sigma = 0.5
sarma_model = list(ar = ar, ma = ma, sigma = sigma)
sarma_sim = sarma.sim(100, 100, model = sarma_model)
summary(sarma_sim)
sarma_est = sarma.est(sarma_sim$Y)
summary(sarma_est)
# SFARIMA Simulation and Estimation
ma = matrix(c(1, 0.2, 0.4, 0.1), nrow = 2, ncol = 2)
ar = matrix(c(1, 0.5, -0.1, 0.1), nrow = 2, ncol = 2)
d = c(0.1, 0.1)
sigma = 0.5
sfarima_model = list(ar = ar, ma = ma, d = d, sigma = sigma)
sfarima_sim = sfarima.sim(100, 100, model = sfarima_model)
summary(sfarima_sim)
sfarima_est = sfarima.est(sfarima_sim$Y)
summary(sfarima_est)