sfarima.sim {DCSmooth} | R Documentation |
Simulation of a SFARIMA(p, q, d)
-process
Description
sfarima.sim
simulates a specified SFARIMA-model
on a lattice with normally distributed innovations.
Usage
sfarima.sim(n_x, n_t, model)
Arguments
n_x |
Number of simulated observation rows. |
n_t |
Number of simulated observation columns. |
model |
A list containing the coefficient matrices |
Value
The function returns an object of class "sfarima"
, consisting
of
Y | A n_x \times n_t -matrix of simulated values
of the specified SFARIMA process. |
innov | The innovations used for simulation, iid. drawn from a
normal distribution with zero mean and variance
\sigma^2 . |
model | The model used for simulation, inherited from input. |
stnry | An logical variable indicating whether the simulated model is stationary. |
Details
Simulation of a separable spatial fractionally ARIMA process (SFARIMA). This
function returns an object of class "sfarima"
. The simulated
innovations are created from a normal distribution with specified variance
\sigma^2
.
see the vignette for further details.
See Also
Examples
# See vignette("DCSmooth") for examples and explanation
ma <- matrix(c(1, 0.2, 0.4, 0.1), nrow = 2, ncol = 2)
ar <- matrix(c(1, 0.5, -0.1, 0.1), nrow = 2, ncol = 2)
d <- c(0.1, 0.1)
sigma <- 0.5
sfarima_model <- list(ar = ar, ma = ma, d = d, sigma = sigma)
sfarima_sim <- sfarima.sim(100, 100, model = sfarima_model)
surface.dcs(sfarima_sim$Y)
[Package DCSmooth version 1.1.2 Index]