EF2dfa {DCCA} | R Documentation |
Expected value of the detrended variance
Description
Calculates the expected value of the detrended variance.
Usage
EF2dfa(m = 3, nu = 0, G, K = NULL)
Arguments
m |
an integer or integer valued vector indicating the size of the window for the polinomial fit. |
nu |
a non-negative integer denoting the degree of the polinomial fit applied on the integrated series. |
G |
the autocovariance matrix for the original time series. The dimension of |
K |
optional: the matrix |
Value
A vector of size length(m)
containing the expected values of the detrended variance corresponding to the values of m
provided. This is expression (20) in Prass and Pumi (2019).
Author(s)
Taiane Schaedler Prass
References
Prass, T.S. and Pumi, G. (2019). On the behavior of the DFA and DCCA in trend-stationary processes <arXiv:1910.10589>.
Examples
m = 3
K = Km(m = m, nu = 0)
G = diag(m+1)
EF2dfa(G = G, K = K)
# same as
EF2dfa(m = 3, nu = 0, G = G)
# An AR(1) example
phi = 0.4
n = 500
burn.in = 50
eps = rnorm(n + burn.in)
z.temp = numeric(n + burn.in)
z.temp[1] = eps[1]
for(i in 2:(n + burn.in)){
z.temp[i] = phi*z.temp[i-1] + eps[i]
}
z = z.temp[(burn.in + 1):(n + burn.in)]
F2.dfa = F2dfa(z, m = 3:100, nu = 0, overlap = TRUE)
plot(3:100, F2.dfa, type="o", xlab = "m")