predict_profile {DALEX} | R Documentation |
Instance Level Profile as Ceteris Paribus
Description
This function calculated individual profiles aka Ceteris Paribus Profiles.
From DALEX version 1.0 this function calls the ceteris_paribus
from the ingredients
package.
Find information how to use this function here: https://ema.drwhy.ai/ceterisParibus.html.
Usage
predict_profile(
explainer,
new_observation,
variables = NULL,
...,
type = "ceteris_paribus",
variable_splits_type = "uniform"
)
individual_profile(
explainer,
new_observation,
variables = NULL,
...,
type = "ceteris_paribus",
variable_splits_type = "uniform"
)
Arguments
explainer |
a model to be explained, preprocessed by the |
new_observation |
a new observation for which predictions need to be explained |
variables |
character - names of variables to be explained |
... |
other parameters |
type |
character, currently only the |
variable_splits_type |
how variable grids shall be calculated? Use "quantiles" (default) for percentiles or "uniform" to get uniform grid of points. Will be passed to 'ingredients'. |
Value
An object of the class ceteris_paribus_explainer
.
It's a data frame with calculated average response.
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
Examples
new_dragon <- data.frame(year_of_birth = 200,
height = 80,
weight = 12.5,
scars = 0,
number_of_lost_teeth = 5)
dragon_lm_model4 <- lm(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,
data = dragons)
dragon_lm_explainer4 <- explain(dragon_lm_model4, data = dragons, y = dragons$year_of_birth,
label = "model_4v")
dragon_lm_predict4 <- predict_profile(dragon_lm_explainer4,
new_observation = new_dragon,
variables = c("year_of_birth", "height", "scars"))
head(dragon_lm_predict4)
plot(dragon_lm_predict4,
variables = c("year_of_birth", "height", "scars"))
library("ranger")
dragon_ranger_model4 <- ranger(life_length ~ year_of_birth + height +
weight + scars + number_of_lost_teeth,
data = dragons, num.trees = 50)
dragon_ranger_explainer4 <- explain(dragon_ranger_model4, data = dragons, y = dragons$year_of_birth,
label = "model_ranger")
dragon_ranger_predict4 <- predict_profile(dragon_ranger_explainer4,
new_observation = new_dragon,
variables = c("year_of_birth", "height", "scars"))
head(dragon_ranger_predict4)
plot(dragon_ranger_predict4,
variables = c("year_of_birth", "height", "scars"))