model_profile {DALEX} | R Documentation |
Dataset Level Variable Profile as Partial Dependence or Accumulated Local Dependence Explanations
Description
This function calculates explanations on a dataset level set that explore model response as a function of selected variables.
The explanations can be calulated as Partial Dependence Profile or Accumulated Local Dependence Profile.
Find information how to use this function here: https://ema.drwhy.ai/partialDependenceProfiles.html.
The variable_profile
function is a copy of model_profile
.
Usage
model_profile(
explainer,
variables = NULL,
N = 100,
...,
groups = NULL,
k = NULL,
center = TRUE,
type = "partial"
)
variable_profile(
explainer,
variables = NULL,
N = 100,
...,
groups = NULL,
k = NULL,
center = TRUE,
type = "partial"
)
single_variable(explainer, variable, type = "pdp", ...)
Arguments
explainer |
a model to be explained, preprocessed by the |
variables |
character - names of variables to be explained |
N |
number of observations used for calculation of aggregated profiles. By default |
... |
other parameters that will be passed to |
groups |
a variable name that will be used for grouping.
By default |
k |
number of clusters for the hclust function (for clustered profiles) |
center |
shall profiles be centered before clustering |
type |
the type of variable profile. Either |
variable |
deprecated, use variables instead |
Details
Underneath this function calls the partial_dependence
or
accumulated_dependence
functions from the ingredients
package.
Value
An object of the class model_profile
.
It's a data frame with calculated average model responses.
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
Examples
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)
model_profile_glm_fare <- model_profile(explainer_glm, "fare")
plot(model_profile_glm_fare)
library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed)
model_profile_ranger <- model_profile(explainer_ranger)
plot(model_profile_ranger, geom = "profiles")
model_profile_ranger_1 <- model_profile(explainer_ranger, type = "partial",
variables = c("age", "fare"))
plot(model_profile_ranger_1 , variables = c("age", "fare"), geom = "points")
model_profile_ranger_2 <- model_profile(explainer_ranger, type = "partial", k = 3)
plot(model_profile_ranger_2 , geom = "profiles")
model_profile_ranger_3 <- model_profile(explainer_ranger, type = "partial", groups = "gender")
plot(model_profile_ranger_3 , geom = "profiles")
model_profile_ranger_4 <- model_profile(explainer_ranger, type = "accumulated")
plot(model_profile_ranger_4 , geom = "profiles")
# Multiple profiles
model_profile_ranger_fare <- model_profile(explainer_ranger, "fare")
plot(model_profile_ranger_fare, model_profile_glm_fare)