possum {DAAG} | R Documentation |
Possum Measurements
Description
The possum
data frame consists of nine morphometric
measurements on each of 104 mountain brushtail possums, trapped
at seven Australian sites from Southern Victoria to central Queensland.
See possumsites
for further details.
The fossum
data frame is the subset of possum
that has
measurements for the 43 females.
Usage
data(possum)
data(fossum)
Format
This data frame contains the following columns:
- case
observation number
- site
one of seven locations where possums were trapped. The sites were, in order,Cambarville, Bellbird, Whian Whian, Byrangery, Conondale, Allyn River and Bulburin
- Pop
a factor which classifies the sites as
Vic
Victoria,other
New South Wales or Queensland- sex
a factor with levels
f
female,m
male- age
age
- hdlngth
head length
- skullw
skull width
- totlngth
total length
- taill
tail length
- footlgth
foot length
- earconch
ear conch length
- eye
distance from medial canthus to lateral canthus of right eye
- chest
chest girth (in cm)
- belly
belly girth (in cm)
Source
Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.
Examples
boxplot(earconch~sex, data=possum)
pause()
sex <- as.integer(possum$sex)
oldpar <- par(oma=c(2,4,5,4))
pairs(possum[, c(9:11)], pch=c(0,2:7), col=c("red","blue"),
labels=c("tail\nlength","foot\nlength","ear conch\nlength"))
chh <- par()$cxy[2]; xleg <- 0.05; yleg <- 1.04
oldpar <- par(xpd=TRUE)
legend(xleg, yleg, c("Cambarville", "Bellbird", "Whian Whian ",
"Byrangery", "Conondale ","Allyn River", "Bulburin"), pch=c(0,2:7),
x.intersp=1, y.intersp=0.75, cex=0.8, xjust=0, bty="n", ncol=4)
text(x=0.2, y=yleg - 2.25*chh, "female", col="red", cex=0.8, bty="n")
text(x=0.75, y=yleg - 2.25*chh, "male", col="blue", cex=0.8, bty="n")
par(oldpar)
pause()
sapply(possum[,6:14], function(x)max(x,na.rm=TRUE)/min(x,na.rm=TRUE))
pause()
here <- na.omit(possum$footlgth)
possum.prc <- princomp(possum[here, 6:14])
pause()
plot(possum.prc$scores[,1] ~ possum.prc$scores[,2],
col=c("red","blue")[as.numeric(possum$sex[here])],
pch=c(0,2:7)[possum$site[here]], xlab = "PC1", ylab = "PC2")
# NB: We have abbreviated the axis titles
chh <- par()$cxy[2]; xleg <- -15; yleg <- 20.5
oldpar <- par(xpd=TRUE)
legend(xleg, yleg, c("Cambarville", "Bellbird", "Whian Whian ",
"Byrangery", "Conondale ","Allyn River", "Bulburin"), pch=c(0,2:7),
x.intersp=1, y.intersp=0.75, cex=0.8, xjust=0, bty="n", ncol=4)
text(x=-9, y=yleg - 2.25*chh, "female", col="red", cex=0.8, bty="n")
summary(possum.prc, loadings=TRUE, digits=2)
par(oldpar)
pause()
require(MASS)
here <- !is.na(possum$footlgth)
possum.lda <- lda(site ~ hdlngth+skullw+totlngth+ taill+footlgth+
earconch+eye+chest+belly, data=possum, subset=here)
options(digits=4)
possum.lda$svd # Examine the singular values
plot(possum.lda, dimen=3)
# Scatterplot matrix - scores on 1st 3 canonical variates (Figure 11.4)
possum.lda
pause()
boxplot(fossum$totlngth)