MultinformationHeuristic {D2MCS}R Documentation

Feature-clustering based on Mutual Information Computation theory.

Description

Performs the feature-clustering using MCC score. Valid for both bi-class and multi-class problems. Only valid for bi-class problems.

Super class

D2MCS::GenericHeuristic -> MultinformationHeuristic

Methods

Public methods


Method new()

Empty function used to initialize the object arguments in runtime.

Usage
MultinformationHeuristic$new()

Method heuristic()

Mutinformation takes two random variables as input and computes the mutual information in nats according to the entropy estimator method.

Usage
MultinformationHeuristic$heuristic(col1, col2, column.names = NULL)
Arguments
col1

A vector/factor denoting a random variable or a data.frame denoting a random vector where columns contain variables/features and rows contain outcomes/samples.

col2

An another random variable or random vector (vector/factor or data.frame).

column.names

An optional character vector with the names of both columns.

Returns

Returns the mutual information I(X;Y) in nats.


Method clone()

The objects of this class are cloneable with this method.

Usage
MultinformationHeuristic$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Dataset, mutinformation


[Package D2MCS version 1.0.1 Index]