| Dataset {D2MCS} | R Documentation |
Simple Dataset handler.
Description
Creates a valid simple dataset object.
Methods
Public methods
Method new()
Method for initializing the object arguments during runtime.
Usage
Dataset$new( filepath, header = TRUE, sep = ",", skip = 0, normalize.names = FALSE, string.as.factor = FALSE, ignore.columns = NULL )
Arguments
filepathThe name of the file which the data are to be read from. Each row of the table appears as one line of the file. If it does not contain an _absolute_ path, the file name is _relative_ to the current working directory, '
getwd()'.headerA logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: '
header' is set to 'TRUE' if and only if the first row contains one fewer field than the number of columns.sepThe field separator character. Values on each line of the file are separated by this character.
skipDefines the number of header lines should be skipped.
normalize.namesA logical value indicating whether the columns names should be automatically renamed to ensure R compatibility.
string.as.factorA logical value indicating if character columns should be converted to factors (
default = FALSE).ignore.columnsSpecify the columns from the input file that should be ignored.
Method getColumnNames()
Get the name of the columns comprising the dataset.
Usage
Dataset$getColumnNames()
Returns
A character vector with the name of each column.
Method getDataset()
Gets the full dataset.
Usage
Dataset$getDataset()
Returns
A data.frame with all the loaded information.
Method getNcol()
Obtains the number of columns present in the dataset.
Usage
Dataset$getNcol()
Returns
An integer of length 1 or NULL
Method getNrow()
Obtains the number of rows present in the dataset.
Usage
Dataset$getNrow()
Returns
An integer of length 1 or NULL
Method getRemovedColumns()
Get the columns removed or ignored.
Usage
Dataset$getRemovedColumns()
Returns
A list containing the name of the removed columns.
Method cleanData()
Removes data.frame columns matching some criterion.
Usage
Dataset$cleanData(remove.funcs = NULL, remove.na = TRUE, remove.const = FALSE)
Arguments
Method removeColumns()
Applies cleanData function over an specific set of
columns.
Usage
Dataset$removeColumns( columns, remove.funcs = NULL, remove.na = FALSE, remove.const = FALSE )
Arguments
columnsSet of columns (numeric or character) where removal operation should be applied.
remove.funcsA vector of functions use to define which columns must be removed.
remove.naA logical value indicating whether
NAvalues should be removed.remove.constA logical value used to indicate if constant values should be removed.
Method createPartitions()
Creates a k-folds partition from the initial dataset.
Usage
Dataset$createPartitions( num.folds = NULL, percent.folds = NULL, class.balance = NULL )
Arguments
Method createSubset()
Creates a Subset for testing or classification
purposes. A target class should be provided for testing purposes.
Usage
Dataset$createSubset( num.folds = NULL, opts = list(remove.na = TRUE, remove.const = FALSE), class.index = NULL, positive.class = NULL )
Arguments
num.foldsA numeric defining the number of folds that should we used to build the Subset.
optsA list with optional parameters. Valid arguments are
remove.na(removes columns with NA values) andremove.const(ignore columns with constant values).class.indexA numeric value identifying the column representing the target class
positive.classDefines the positive class value.
Returns
A Subset object.
Method createTrain()
Creates a set for training purposes. A class should be defined to guarantee full-compatibility with supervised models.
Usage
Dataset$createTrain( class.index, positive.class, num.folds = NULL, opts = list(remove.na = TRUE, remove.const = FALSE) )
Arguments
class.indexA numeric value identifying the column representing the target class
positive.classDefines the positive class value.
num.foldsA numeric defining the number of folds that should we used to build the
Subset.optsA list with optional parameters. Valid arguments are
remove.na(removes columns with NA values) andremove.const(ignore columns with constant values).
Returns
A Trainset object.