ClassWeightedVoting {D2MCS} | R Documentation |
Implementation Weighted Voting scheme.
Description
A new implementation of ClassMajorityVoting
where
each class value has different values (weights).
Super class
D2MCS::SimpleVoting
-> ClassWeightedVoting
Methods
Public methods
Inherited methods
Method new()
Method for initializing the object arguments during runtime.
Usage
ClassWeightedVoting$new(cutoff = 0.5, weights = NULL)
Arguments
Method getWeights()
The function returns the weights used to perform the voting scheme.
Usage
ClassWeightedVoting$getWeights()
Returns
A numeric vector.
Method setWeights()
The function allows changing the value of the weights.
Usage
ClassWeightedVoting$setWeights(weights)
Arguments
weights
A numeric vector containing the new weights.
Method execute()
The function implements the cluster-weighted majority voting procedure.
Usage
ClassWeightedVoting$execute(predictions, verbose = FALSE)
Arguments
predictions
A
ClusterPredictions
object containing all the predictions achieved for each cluster.verbose
A logical value to specify if more verbosity is needed.
Method clone()
The objects of this class are cloneable with this method.
Usage
ClassWeightedVoting$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
D2MCS
, ClassMajorityVoting
,
ClassWeightedVoting
, ProbAverageVoting
,
ProbAverageWeightedVoting
, ProbBasedMethodology