expMisclassCost {CustomerScoringMetrics} | R Documentation |
Calculate expected misclassification cost
Description
Calculates the expected misclassification cost value for a set of predictions.
Usage
expMisclassCost(predTest, depTest, costType = c("costRatio", "costMatrix"),
costs = NULL, cutoff = 0.5, dyn.cutoff = FALSE, predVal = NULL,
depVal = NULL)
Arguments
predTest |
Vector with predictions (real-valued or discrete) |
depTest |
Vector with real class labels |
costType |
An argument that specifies how the cost information is provided. This
should be either |
costs |
see |
cutoff |
Threshold for converting real-valued predictions into class predictions. Default 0.5. |
dyn.cutoff |
Logical indicator to enable dynamic threshold determination using
validation sample predictions. In this case, the function determines, using validation
data, the indidicence (occurrence percentage of the customer behavior or characterstic
of interest) and chooses a cutoff value so that the number of predicted positives is
equal to the number of true positives. If |
predVal |
Vector with predictions (real-valued or discrete). Only used if
|
depVal |
Optional vector with true class labels for validation data. Only used
if |
Value
A list with
EMC |
expected misclassification cost value |
cutoff |
the threshold value used to convert real-valued predictions to class predictions |
Author(s)
Koen W. De Bock, kdebock@audencia.com
See Also
Examples
## Load response modeling data set
data("response")
## Apply expMisclassCost function to obtain the misclassification cost for the
## predictions for test sample. Assume a cost ratio of 5.
emc<-expMisclassCost(response$test[,2],response$test[,1],costType="costRatio", costs=5)
print(emc$EMC)