Merton.sim {CreditRisk} | R Documentation |
Firm value in Merton's model
Description
With this function we simulate n
trajectories of firm value based on
Merton's model.
Usage
Merton.sim(V0, r, sigma, t, n, seed = as.numeric(Sys.time()))
Arguments
V0 |
firm value at time |
r |
risk-free interest rate (constant for all t). |
sigma |
volatility (constant for all t). |
t |
a vector of debt maturity structure. |
n |
number of trajectories to be generated. |
seed |
starting seed, default seed is setted randomly. |
Details
The trajectories are calculated according to the equation:
V_T = V_0 \exp{\int_0^T dln V_t}
Where we express dln V_t
using Ito's lemma to derive the differential
of the logarithm of the firm value as:
dln V_t =(\mu - \frac{\sigma^2}{2})dt + \sigma dW_t
Value
This function returns a matrix containing the simulated firm values.
References
Gergely Daròczi, Michael Puhle, Edina Berlinger, Péter Csòka, Dàniel Havran Màrton Michaletzky, Zsolt Tulasay, Kata Vàradi, Agnes Vidovics-Dancs (2013) Introduction to R for Quantitative Finance.
Examples
V <- Merton.sim(V0 = 20, r = 0.05, sigma = 0.2, t = seq(0, 30, by = 0.5), n = 5)
matplot(x = seq(0, 30, by = 0.5), y = V, type = 's', lty = 1, xlab = 'Time',
ylab = 'Firm value trajectories', main = "Trajectories of the firm values in the Merton's model")