multilag.cpts.merge {CptNonPar} | R Documentation |
Merge Change Point Estimators from Multiple Lags
Description
Merges change point estimators from different lagged values into a final set of overall change point estimators.
Usage
multilag.cpts.merge(
x.c,
eta.merge = 1,
merge.type = c("sequential", "bottom-up")[1]
)
Arguments
x.c |
A |
eta.merge |
A positive numeric value for the minimal mutual distance of changes, relative to bandwidth, used to merge change point estimators across different lags. |
merge.type |
String indicating the method used to merge change point estimators from different lags. Possible choices are
|
Details
See McGonigle and Cho (2023) for further details.
Value
A list
object which contains the following fields
cpts |
A matrix with rows corresponding to final change point estimators, with estimated change point location and associated lag and p-value given in columns. |
cpt.clusters |
A |
References
McGonigle, E.T., Cho, H. (2023). Nonparametric data segmentation in multivariate time series via joint characteristic functions. arXiv preprint arXiv:2305.07581.
Messer M., Kirchner M., Schiemann J., Roeper J., Neininger R., Schneider G. (2014). A Multiple Filter Test for the Detection of Rate Changes in Renewal Processes with Varying Variance. The Annals of Applied Statistics, 8(4), 2027-2067.
See Also
Examples
set.seed(1)
n <- 500
noise <- c(rep(1, 300), rep(0.4, 200)) * stats::arima.sim(model = list(ar = 0.3), n = n)
signal <- c(rep(0, 100), rep(2, 400))
x <- signal + noise
x.c0 <- np.mojo(x, G = 83, lag = 0)
x.c1 <- np.mojo(x, G = 83, lag = 1)
x.c <- multilag.cpts.merge(list(x.c0, x.c1))
x.c