plot_pseudobeta_newObservation.list {Coxmos} | R Documentation |
plot_pseudobeta_newObservation.list
Description
Run the function "plot_pseudobeta_newObservation" for a list of models. More information in "?plot_pseudobeta_newObservation".
Usage
plot_pseudobeta_newObservation.list(
lst_models,
new_observation,
error.bar = TRUE,
onlySig = TRUE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,
auto.limits = TRUE,
show.betas = FALSE,
verbose = FALSE
)
Arguments
lst_models |
List of Coxmos models. |
new_observation |
Numeric matrix or data.frame. New explanatory variables (raw data) for one observation. Qualitative variables must be transform into binary variables. |
error.bar |
Logical. Show error bar (default: TRUE). |
onlySig |
Logical. Compute pseudobetas using only significant components (default: TRUE). |
alpha |
Numeric. Numerical values are regarded as significant if they fall below the threshold (default: 0.05). |
zero.rm |
Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE). |
top |
Numeric. Show "top" first variables with the higher pseudobetas in absolute value. If top = NULL, all variables are shown (default: NULL). |
auto.limits |
Logical. If "auto.limits" = TRUE, limits are detected automatically (default: TRUE). |
show.betas |
Logical. Show original betas (default: FALSE). |
verbose |
Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE). |
Value
A list of lst_models length with a list of four elements per each model:
plot
: Linear prediction per variable.
lp.var
: Value of each linear prediction per variable.
norm_observation
: Observation normalized using the model information.
observation
: Observation used.
Author(s)
Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
Examples
data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_pseudobeta_newObservation.list(lst_models, new_observation = X_test[1,,drop=FALSE])