plot_pseudobeta.list {Coxmos} | R Documentation |
plot_pseudobeta.list
Description
Run the function "plot_pseudobeta" for a list of models. More information in "?plot_pseudobeta".
Usage
plot_pseudobeta.list(
lst_models,
error.bar = TRUE,
onlySig = FALSE,
alpha = 0.05,
zero.rm = TRUE,
top = NULL,
auto.limits = TRUE,
show_percentage = TRUE,
size_percentage = 3,
verbose = FALSE
)
Arguments
lst_models |
List of Coxmos models. |
error.bar |
Logical. Show error bar (default: TRUE). |
onlySig |
Logical. Compute pseudobetas using only significant components (default: FALSE). |
alpha |
Numeric. Numerical values are regarded as significant if they fall below the threshold (default: 0.05). |
zero.rm |
Logical. Remove variables with a pseudobeta equal to 0 (default: TRUE). |
top |
Numeric. Show "top" first variables with the higher pseudobetas in absolute value. If top = NULL, all variables are shown (default: NULL). |
auto.limits |
Logical. If "auto.limits" = TRUE, limits are detected automatically (default: TRUE). |
show_percentage |
Logical. If show_percentage = TRUE, it shows the contribution percentage for each variable to the full model (default: TRUE). |
size_percentage |
Numeric. Size of percentage text (default: 3). |
verbose |
Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE). |
Value
A list containing the following elements per model:
plot
: Depending on the model type, this can either be a single ggplot object visualizing the pseudo-beta coefficients for the original variables in a single block PLS-Cox model, or a list of ggplot objects for each block in a multiblock PLS-Cox model. Each plot provides a comprehensive visualization of the pseudo-beta coefficients, potentially including error bars, significance filtering, and variable contribution percentages.
beta
: A matrix or list of matrices (for multiblock models) containing the computed pseudo-beta coefficients for the original variables. These coefficients represent the influence of each original variable on the survival prediction.
sd.min
: A matrix or list of matrices (for multiblock models) representing the lower bounds of the error bars for the pseudo-beta coefficients.
sd.max
: A matrix or list of matrices (for multiblock models) representing the upper bounds of the error bars for the pseudo-beta coefficients.
Author(s)
Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
Examples
data("X_proteomic")
data("Y_proteomic")
X <- X_proteomic[,1:50]
Y <- Y_proteomic
splsicox.model <- splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
splsdrcox.model <- splsdrcox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
plot_pseudobeta.list(lst_models = lst_models)