CovMean {CovTools} | R Documentation |
Estimate Mean Covariance Matrix
Description
For a given 3-dimensional array where symmetric positive definite (SPD) matrices are stacked slice by slice, it estimates Frechet mean on an open cone of SPD matrices under corresponding metric/distance measure.
Usage
CovMean(
A,
method = c("AIRM", "Cholesky", "Euclidean", "LERM", "Procrustes.SS",
"Procrustes.Full", "PowerEuclidean", "RootEuclidean"),
power = 1
)
Arguments
A |
a |
method |
the type of distance measures to be used; |
power |
a non-zero number for PowerEuclidean distance. |
Value
a (p\times p)
mean covariance matrix estimated.
References
Dryden IL, Koloydenko A, Zhou D (2009). “Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging.” The Annals of Applied Statistics, 3(3), 1102–1123. ISSN 1932-6157.
Examples
## Not run:
## generate 100 sample covariances of size (5-by-5).
pdim = 5
samples = samplecovs(100,pdim)
## compute mean of first 50 sample covariances from data under Normal(0,Identity).
mLERM = CovMean(samples[,,1:50], method="LERM")
mAIRM = CovMean(samples[,,1:50], method="AIRM")
mChol = CovMean(samples[,,1:50], method="Cholesky")
mRoot = CovMean(samples[,,1:50], method="RootEuclidean")
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(mLERM[,pdim:1], main="LERM mean")
image(mAIRM[,pdim:1], main="AIRM mean")
image(mChol[,pdim:1], main="Cholesky mean")
image(mRoot[,pdim:1], main="RootEuclidean mean")
par(opar)
## End(Not run)