CovEst.soft {CovTools} | R Documentation |
Covariance Estimation via Soft Thresholding
Description
Soft Thresholding method for covariance estimation takes off-diagonal elements z
of sample covariance matrix and applies
h_{\tau}(z) = \textrm{sgn}(z)(|z|-\tau)_{+}
where \textrm{sgn}(z)
is a sign of the value z
, and (x)_+ = \textrm{max}(x,0)
. If thr
is rather a vector of regularization parameters, it applies
cross-validation scheme to select an optimal value.
Usage
CovEst.soft(X, thr = 0.5, nCV = 10, parallel = FALSE)
Arguments
X |
an |
thr |
user-defined threshold value. If it is a vector of regularization values, it automatically selects one that minimizes cross validation risk. |
nCV |
the number of repetitions for 2-fold random cross validations for each threshold value. |
parallel |
a logical; |
Value
a named list containing:
- S
a
(p\times p)
covariance matrix estimate.- CV
a dataframe containing vector of tested threshold values(
thr
) and corresponding cross validation scores(CVscore
).
References
Antoniadis A, Fan J (2001). “Regularization of Wavelet Approximations.” Journal of the American Statistical Association, 96(455), 939–967. ISSN 0162-1459, 1537-274X.
Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995). “Wavelet Shrinkage: Asymptopia?” Journal of the Royal Statistical Society. Series B (Methodological), 57(2), 301–369. ISSN 00359246.
Examples
## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)
## apply 4 different schemes
# mthr is a vector of regularization parameters to be tested
mthr <- exp(seq(from=log(0.1),to=log(10),length.out=10))
out1 <- CovEst.soft(data, thr=0.1) # threshold value 0.1
out2 <- CovEst.soft(data, thr=1) # threshold value 1
out3 <- CovEst.soft(data, thr=10) # threshold value 10
out4 <- CovEst.soft(data, thr=mthr) # automatic threshold checking
## visualize 4 estimated matrices
gcol <- gray((0:100)/100)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gcol, main="thr=0.1")
image(out2$S[,pdim:1], col=gcol, main="thr=1")
image(out3$S[,pdim:1], col=gcol, main="thr=10")
image(out4$S[,pdim:1], col=gcol, main="automatic")
par(opar)