| datfc {CovSel} | R Documentation |
Simulated Data, Mixed
Description
This data is simulated. The covariates, X, and the treatment, T, are all generated by simulating from independent or multivariate normal distributions and then some variables are dichotomized to get binary variables with a certain dependence structure. The code generating the data is
library(bindata)
set.seed(9327529)
n<-500
x1 <- rnorm(n, mean = 0, sd = 1)
x2 <- rbinom(n, 1, prob = 0.5)
x25 <- rmvbin(n, bincorr=cbind(c(1,0.7),c(0.7,1)), margprob=c(0.5,0.5))
x2 <- x25[,1]
Sigma <- matrix(c(1,0.5,0.5,1),ncol=2)
x34 <- mvrnorm(n, rep(0, 2), Sigma)
x3 <- x34[,1]
x4 <- x34[,2]
x5 <- x25[,2]
x6 <- rbinom(n, 1, prob = 0.5)
x7<- rnorm(n, mean = 0, sd = 1)
x8 <- rbinom(n, 1, prob = 0.5)
e0<-rnorm(n)
e1<-rnorm(n)
p <- 1/(1 + exp(3 - 1.2 * x1 - 3.7 * x2 - 1.5 * x3 - 0.3 * x4 - 0.3 * x5 - 1.9 * x8))
T <- rbinom(n, 1, prob = p)
y0 <- 4 + 2 * x1 + 3 * x4 + 5 * x5 + 2 * x6 + e0
y1 <- 2 + 2 * x1 + 3 * x4+ 5 * x5 + 2 * x6 + e1
y <- y1 * T + y0 * (1 - T)
datfc <- data.frame(x1, x2, x3, x4, x5, x6, x7, x8, y0, y1, y, T)
datfc[, c(2, 5, 6, 8)] <- lapply(datfc[, c(2, 5, 6, 8)], factor)
datfc[, 12] <- as.numeric(datfc[, 12])
Usage
data(datfc)
Format
A data frame with 500 observations on the following 12 variables.
x1a numeric vector
x2a factor with two levels
x3a numeric vector
x4a numeric vector
x5a factor with two levels
x6a factor with two levels
x7a numeric vector
x8a factor with two levels
y0a numeric vector
y1a numeric vector
ya numeric vector
Ta numeric vector