predict.covregrf {CovRegRF} | R Documentation |
Predict method for covregrf objects
Description
Obtain predicted covariance matrices using a covregrf forest for training or new data.
Usage
## S3 method for class 'covregrf'
predict(object, newdata, ...)
Arguments
object |
An object of class |
newdata |
Test data of the set of covariates. A data.frame with numeric
values and factors. If missing, the out-of-bag predictions in |
... |
Optional arguments to be passed to other methods. |
Value
An object of class (covregrf, predict)
which is a list with the
following components:
predicted |
Predicted covariance matrices for test data. If
|
bop |
Bag of Observations for Prediction. An |
n |
Sample size of the test data ( |
xvar.names |
A character vector of the covariate names. |
yvar.names |
A character vector of the response variable names. |
See Also
covregrf
vimp.covregrf
print.covregrf
Examples
options(rf.cores=2, mc.cores=2)
## load generated example data
data(data, package = "CovRegRF")
xvar.names <- colnames(data$X)
yvar.names <- colnames(data$Y)
data1 <- data.frame(data$X, data$Y)
## define train/test split
set.seed(2345)
smp <- sample(1:nrow(data1), size = round(nrow(data1)*0.6), replace = FALSE)
traindata <- data1[smp,,drop=FALSE]
testdata <- data1[-smp, xvar.names, drop=FALSE]
## formula object
formula <- as.formula(paste(paste(yvar.names, collapse="+"), ".", sep=" ~ "))
## train covregrf
covregrf.obj <- covregrf(formula, traindata, params.rfsrc = list(ntree = 50))
## predict without new data (OOB predictions will be returned)
pred.obj <- predict(covregrf.obj)
pred.oob <- pred.obj$predicted
## predict with new test data
pred.obj2 <- predict(covregrf.obj, newdata = testdata)
pred <- pred.obj2$predicted