BlendedLFDR {CorrectedFDR} | R Documentation |
Blended Estimator of Local False Discovery Rate (LFDR)
Description
BlendedLFDR is a function used to compute the blended estimator based on a benchmark estimator, usually the nonlocal false discovery rate (NFDR), and a set of estimators of local false discovery rates (LFDR).
Usage
BlendedLFDR(Benchmark, EstLFDR)
Arguments
Benchmark |
Input numeric vector for benchmark estimator (often NFDR). |
EstLFDR |
Input a matrix containing two or more sets of LFDR estimators. |
Details
Benchmark
is an estimator of the FDR. This is usually the nonlocal false discovery rate (NFDR).
EstLFDR
is a matrix of several LFDR estimators such as corrected FDR (CFDR), re-ranked FDR (RFDR), MLE (Maximum Likelihood Estimator), BBE1(Binomial Based Estimator), etc.
The output returns a single numeric vector containing the blended estimator of the LFDR.
Value
The value of the blended estimator is an estimator of the LFDR.
Note
The number of rows for the Benchmark
and EstLFDR
must have equal lengths.
Author(s)
Code: Abbas Rahal.
Documentation: Anna Akpawu, Justin Chitpin and Abbas Rahal.
Maintainer: Abbas Rahal <Abbas.Rahal13@gmail.com>
References
Bickel, D. R. (2015). Blending Bayesian and frequentist methods according to the precision of prior information with applications to hypothesis testing. Statistical Methods and Applications, 24(4), pp. 523-546.
Examples
#The data used to compute the LFDR estimators (CFDR, RFDR, MLE, and BBE1)
#comes from the ER/PR breast cancer data from the "ProData" package.
#To read more about the data, visit the website: https://www.bioconductor.org/
#Test statistics were first obtain, then the estimators for the FDR and LFDR were estimated.
#Benchmark vector
NFDR<-c(0.5661106448, 0.6897735492, 0.0000288516, 0.1549745113, 0.1305508970, 0.2421032979,
0.1482335568, 1, 1, 1, 0.6602562820, 0.7034682859, 0.7036332234, 0.0071192090,
0.8204536037, 0.9757716498, 0.7379329991, 1, 0.6333245479, 0.9904389701)
#Estimators of LFDR
CFDR<- c(1, 1, 0.0000288516, 0.2841199373, 0.2980912149, 0.5931530799, 0.3088199101,
1, 1, 1, 1, 1, 1, 0.0106788135, 1, 1, 1, 1, 1, 1)
RFDR<- c(0.689773549, 1, 0.007119209, 0.130550897, 0.703633223, 0.660256282, 0.242103298,
1, 1, 1, 0.820453604, 1, 0.703468286, 0.154974511, 1, 1, 1, 1, 0.975771650,1)
MLE<- c(0.9865479126, 0.9969935995, 0.0002372158, 0.6531633437, 0.7611453549, 0.9187425383,
0.7359259207, 0.9996548155, 0.9997310453, 0.9997437131, 0.9944712582, 0.9981685029,
0.9937604664, 0.0215892618, 0.9990504315, 0.9997493086, 0.9967673540, 0.9997016985,
0.9970142319, 0.9997625673)
BBE1<- c(1,1, 0.0003169812, 0.1138333734, 1, 1, 1, 1, 1, 1, 0.3279109564, 1, 0.0504755806,
0.0091823115, 0.0182614994, 0.0165386682, 1, 0.6964403713, 0.1001337298, 0.8415641198 )
#Matrix of LFDR Estimators
Est.LFDR<- matrix(c(CFDR,RFDR,MLE,BBE1), ncol=4)
output<-BlendedLFDR(Benchmark = NFDR, EstLFDR = Est.LFDR)
output$Blended