corrZ2phi {CorrToolBox} | R Documentation |
Computation of the Phi Coefficient from the Correlation of Bivariate Standard Normal Variables
Description
This function computes the phi coefficient derived from dichotomizing bivariate standard normal variables.
Usage
corrZ2phi(corrZ, p1, p2)
Arguments
corrZ |
The correlation of two standard normal variables. |
p1 |
The expected value of the first variable after dichotomization. |
p2 |
The expected value of the second variable after dichotomization. |
Value
The phi coefficient.
References
Demirtas, H. (2016). A note on the relationship between the phi coefficient and the tetrachoric correlation under nonnormal underlying distributions. The American Statistician, 70(2), 143-148.
See Also
Examples
set.seed(987)
library(moments)
y1<-rweibull(n=100000, scale=1, shape=1)
y1.skew<-round(skewness(y1), 5)
y1.exkurt<-round(kurtosis(y1)-3, 5)
gaussmix <- function(n,m1,m2,s1,s2,pi) {
I <- runif(n)<pi
rnorm(n,mean=ifelse(I,m1,m2),sd=ifelse(I,s1,s2))
}
y2<-gaussmix(n=100000, m1=0, s1=1, m2=3, s2=1, pi=0.5)
y2.skew<-round(skewness(y2), 5)
y2.exkurt<-round(kurtosis(y2)-3, 5)
corrZ2phi(corrZ=-0.456, p1=0.85, p2=0.15)
[Package CorrToolBox version 1.6.4 Index]