plot.WS.Corr.Mixed {CorrMixed} | R Documentation |
Plot the within-subject correlations (reliabilities) obtained by using the mixed-effects modeling approch
Description
Plots the within-subject correlations (reliabilities) and 100(1-\alpha)
% Confidence Intervals based on the fitted mixed-effect models.
Usage
## S3 method for class 'WS.Corr.Mixed'
plot(x, xlab, ylab, ylim, main, All.Individual=FALSE, ...)
Arguments
x |
A fitted object of class |
xlab |
The label of the X-axis. |
ylab |
The label of the Y-axis. |
ylim |
The min, max values of the Y-axis. |
main |
The main title of the plot. |
All.Individual |
|
... |
Other arguments to be passed to the plot function. |
Author(s)
Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen
References
Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. Submitted.
See Also
WS.Corr.Mixed
, plot WS.Corr.Mixed
Examples
# open data
data(Example.Data)
# Make covariates used in mixed model
Example.Data$Time2 <- Example.Data$Time**2
Example.Data$Time3 <- Example.Data$Time**3
Example.Data$Time3_log <- (Example.Data$Time**3) * (log(Example.Data$Time))
# model 1: random intercept model
Model1 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Dataset=Example.Data, Model=1, Id="Id", Number.Bootstrap = 50,
Seed = 12345)
# plot the results
plot(Model1)
## Not run: time-consuming code parts
# model 2: random intercept + Gaussian serial corr
Model2 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=2, Id="Id", Seed = 12345)
# plot the results
# estimated corrs as a function of time lag (default plot)
plot(Model2)
# estimated corrs for all pairs of time points
plot(Model2, All.Individual = T)
# model 3
Model3 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1 + Time|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=3, Id="Id", Seed = 12345)
# plot the results
# estimated corrs for all pairs of time points
plot(Model3)
# estimated corrs as a function of time lag
## End(Not run)