WS.Corr.Mixed {CorrMixed} | R Documentation |
Estimate within-subject correlations (reliabilities) based on a mixed-effects model.
Description
This function allows for the estimation of the within-subject correlations using a general and flexible modeling approach that allows at the same time to capture hierarchies in the data, the presence of covariates, and the derivation of correlation estimates. Non-parametric bootstrap-based confidence intervals can be requested.
Usage
WS.Corr.Mixed(Dataset, Fixed.Part=" ", Random.Part=" ",
Correlation=" ", Id, Time=Time, Model=1,
Number.Bootstrap=100, Alpha=.05, Seed=1)
Arguments
Dataset |
A |
Fixed.Part |
The outcome and fixed-effect part of the mixed-effects model to be fitted. The model should be specified in agreement with the |
Random.Part |
The random-effect part of the mixed-effects model to be fitted (specified in line with the |
Correlation |
An optional object describing the within-group correlation structure (specified in line with the |
Id |
The subject indicator. |
Time |
The time indicator. Default |
Model |
The type of model that should be fitted. |
Number.Bootstrap |
The number of bootstrap samples to be used to estimate the Confidence Intervals around |
Alpha |
The |
Seed |
The seed to be used in the bootstrap. Default |
Details
Warning 1
To avoid problems with the lme
function, do not specify powers directly in the function call. For example, rather than specifying Fixed.Part=ZSV ~ Time + Time**2
in the function call, first add Time**2
to the dataset
(Dataset$TimeSq <- Dataset$Time ** 2
) and then use the new variable name in the call:
Fixed.Part=ZSV ~ Time + TimeSq
Warning 2
To avoid problems with the lme
function, specify the Random.Part and Correlation arguments like e.g.,
Random.Part = ~ 1| Subject
and
Correlation=corGaus(form= ~ Time, nugget = TRUE)
not like e.g.,
Random.Part = ~ 1| Subject
and
Correlation=corGaus(form= ~ Time| Subject, nugget = TRUE)
(i.e., do not use Time| Subject
)
Value
Model |
The type of model that was fitted (model |
D |
The |
Tau2 |
The |
Rho |
The |
Sigma2 |
The residual variance. |
AIC |
The AIC value of the fitted model. |
LogLik |
The log likelihood value of the fitted model. |
R |
The estimated reliabilities. |
CI.Upper |
The upper bounds of the bootstrapped confidence intervals. |
CI.Lower |
The lower bounds of the bootstrapped confidence intervals. |
Alpha |
The |
Coef.Fixed |
The estimated fixed-effect parameters. |
Std.Error.Fixed |
The standard errors of the fixed-effect parameters. |
Time |
The time values in the dataset. |
Fitted.Model |
A fitted model of class |
Author(s)
Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen
References
Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. Submitted.
See Also
Explore.WS.Corr, WS.Corr.Mixed.SAS
Examples
# open data
data(Example.Data)
# Make covariates used in mixed model
Example.Data$Time2 <- Example.Data$Time**2
Example.Data$Time3 <- Example.Data$Time**3
Example.Data$Time3_log <- (Example.Data$Time**3) * (log(Example.Data$Time))
# model 1: random intercept model
Model1 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Dataset=Example.Data, Model=1, Id="Id", Number.Bootstrap = 50,
Seed = 12345)
# summary of the results
summary(Model1)
# plot the results
plot(Model1)
## Not run: time-consuming code parts
# model 2: random intercept + Gaussian serial corr
Model2 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=2, Id="Id", Seed = 12345)
# summary of the results
summary(Model2)
# plot the results
# estimated corrs as a function of time lag (default plot)
plot(Model2)
# estimated corrs for all pairs of time points
plot(Model2, All.Individual = T)
# model 3
Model3 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1 + Time|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=3, Id="Id", Seed = 12345)
# summary of the results
summary(Model3)
# plot the results
# estimated corrs for all pairs of time points
plot(Model3)
# estimated corrs as a function of time lag
## End(Not run)