| rVineCopulaREMADA {CopulaREMADA} | R Documentation | 
Simulation from trivariate vine copula mixed models for diagnostic test accuaracy studies accounting for disease prevalence and non-evaluable results
Description
Simulation from trivariate vine copula mixed models for diagnostic test accuaracy studies accounting for disease prevalence and non-evaluable results
Usage
rVineCopulaREMADA.beta(N,p,g,taus,omega1,omega0,qcondcop12,qcondcop13,
qcondcop23,tau2par12,tau2par13,tau2par23)
rVineCopulaREMADA.norm(N,p,si,taus,omega1,omega0,qcondcop12,qcondcop13,
qcondcop23,tau2par12,tau2par13,tau2par23)
Arguments
| N | sample size | 
| p | Vector  | 
| si | Vector  | 
| g | Vector  | 
| taus | Kendall's tau values | 
| omega1 | the probability for non-evaluable positives | 
| omega0 | the probability for non-evaluable negatives | 
| qcondcop12 | function for the inverse of conditional copula cdf at the (1,2) bivariate margin | 
| qcondcop13 | function for the inverse of conditional copula cdf at the (1,3) bivariate margin | 
| qcondcop23 | function for the inverse of conditional copula cdf at the (2,3|1) bivariate margin | 
| tau2par12 | function for maping Kendall's tau at the (1,2) bivariate margin to copula parameter | 
| tau2par13 | function for maping Kendall's tau at the (1,3) bivariate margin to copula parameter | 
| tau2par23 | function for maping Kendall's tau at the (2,3|1) bivariate margin to the conditional copula parameter | 
Value
Simuated data with 6 columns and N rows. 
- TP
- the number of true positives 
- FN
- the number of false negatives 
- FP
- the number of false positives 
- TN
- the number of true negatives 
- NEP
- the number of non-evaluable positives 
- NEN
- the number of non-evaluable negatives 
References
Nikoloulopoulos, A.K. (2017) A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence. Statistical Methods in Medical Research, 26, 2270–2286. doi:10.1177/0962280215596769.
Nikoloulopoulos, A.K. (2018) A vine copula mixed model for trivariate meta-analysis of diagnostic studies accounting for disease prevalence and non-evaluable subjects. ArXiv e-prints, arXiv:1812.03685. https://arxiv.org/abs/1812.03685.
See Also
Examples
p=c(0.8,0.7,0.4)
g=c(0.1,0.1,0.05)
taus=c(-0.5,-0.3,-0.0001)
qcondcop12=qcondcop23=qcondcop13=qcondcln90
tau2par12=tau2par23=tau2par13=tau2par.cln90
# in the absence of non-evaluable results
omega1=0
omega0=0
rVineCopulaREMADA.beta(50,p,g,taus,omega1,omega0,
qcondcop12,qcondcop13,qcondcop23,tau2par12,
tau2par13,tau2par23)
# in the presence of non-evaluable results
omega1=0.1
omega0=0.2
rVineCopulaREMADA.beta(50,p,g,taus,omega1,omega0,
qcondcop12,qcondcop13,qcondcop23,tau2par12,
tau2par13,tau2par23)