VineCopulaREMADA {CopulaREMADA} | R Documentation |
Maximum likelhood estimation for (truncated) vine copula mixed models for diagnostic test accurracy studies accounting for disease prevalence and non-evaluable outcomes
Description
The estimated parameters can be obtained by using a quasi-Newton method applied to the logarithm of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximization process.
Usage
VineCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,
qcondcop12,qcondcop13,qcondcop23,
tau2par12,tau2par13,tau2par23,
NEP,NEN)
VineCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,
qcondcop12,qcondcop13,qcondcop23,
tau2par12,tau2par13,tau2par23,
NEP,NEN)
tVineCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,
qcondcop12,qcondcop13,
tau2par12,tau2par13,
NEP,NEN)
tVineCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,
qcondcop12,qcondcop13,
tau2par12,tau2par13,
NEP,NEN)
Arguments
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing three-dimensional arrays. For more details see |
qcondcop12 |
function for the inverse of conditional copula cdf at the (1,2) bivariate margin |
qcondcop13 |
function for the inverse of conditional copula cdf at the (1,3) bivariate margin |
qcondcop23 |
function for the inverse of conditional copula cdf at the (2,3|1) bivariate margin |
tau2par12 |
function for maping Kendall's tau at the (1,2) bivariate margin to copula parameter |
tau2par13 |
function for maping Kendall's tau at the (1,3) bivariate margin to copula parameter |
tau2par23 |
function for maping Kendall's tau at the (2,3|1) bivariate margin to the conditional copula parameter |
NEP |
the number of non-evaluable positives in the presence of non-evaluable subjects |
NEN |
the number of non-evaluable negatives in the presence of non-evaluable subjects |
Value
A list containing the following components:
minimum |
the value of the estimated minimum of the negative log-likelihood |
estimate |
the MLE |
gradient |
the gradient at the estimated minimum of of the negative log-likelihood |
hessian |
the hessian at the estimated minimum of the negative log-likelihood |
code |
an integer indicating why the optimization process terminated |
iterations |
the number of iterations performed |
For more details see nlm
References
Nikoloulopoulos, A.K. (2017) A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence. Statistical Methods in Medical Research, 26, 2270–2286. doi:10.1177/0962280215596769.
Nikoloulopoulos, A.K. (2020) An extended trivariate vine copula mixed model for meta-analysis of diagnostic studies in the presence of non-evaluable outcomes. The International Journal of Biostatistics, 16(2). doi:10.1515/ijb-2019-0107.
See Also
Examples
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid=meshgrid(gl$n,gl$n,gl$n,nargout=3)
data(OGT)
attach(OGT)
out=tVineCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,
qcondbvn,qcondbvn,tau2par.bvn,tau2par.bvn)
detach(OGT)
############################################
# In the precence of non-evaluable results #
data(coronary)
attach(coronary)
out=tVineCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,
qcondbvn,qcondbvn,tau2par.bvn,tau2par.bvn,NEP,NEN)
detach(coronary)