EstBiCop {CopulaInference} | R Documentation |
Parameter estimation for bivariate copula-based models with arbitrary distributions
Description
Computes the estimation of the parameters of a copula-based model with arbitrary distributions, i.e, possibly mixtures of discrete and continuous distributions. Parametric margins are allowed. The estimation is based on a pseudo-likelihood adapted to ties.
Usage
EstBiCop(
data = NULL,
family,
rotation = 0,
Fx = NULL,
Fxm = NULL,
Fy = NULL,
Fym = NULL
)
Arguments
data |
Matrix or data frame with 2 columns (X,Y). Can be pseudo-observations. If NULL, Fx and Fy must be provided. |
family |
Copula family: "gaussian", "t", "clayton", "frank", "gumbel", "joe", "plackett”, "bb1", "bb6", "bb7","bb8","ncs-gaussian", "ncs-clayton", "ncs-gumbel", "ncs-frank", "ncs-joe","ncs-plackett". |
rotation |
Rotation: 0 (default value), 90, 180, or 270. |
Fx |
Marginal cdf function applied to X (default is NULL). |
Fxm |
Left-limit of marginal cdf function applied to X default is NULL). |
Fy |
Marginal cdf function applied to Y (default is NULL). |
Fym |
Left-limit of marginal cdf function applied to Y (default is NULL). |
Value
par |
Copula parameters |
family |
Copula family |
rotation |
Rotation value |
tauth |
Kendall's tau corresponding to the estimated parameter |
tauemp |
Empirical Kendall's tau (from the multilinear empirical copula) |
rhoSth |
Spearman's rho corresponding to the estimated parameter |
rhoSemp |
Empirical Spearman's tau (from the multilinear empirical copula) |
loglik |
Log-likelihood |
aic |
Aic value |
bic |
Bic value |
data |
Matrix of values (could be (Fx,Fy)) |
F1 |
Cdf of X (Fx if provided, empirical otherwise) |
F1m |
Left-limit of F1 (Fxm if provided, empirical otherwise) |
F2 |
Cdf of Y (Fy if provided, empirical otherwise) |
F2m |
Left-limit of F2 (Fym if provided, empirical otherwise) |
ccdfx |
Conditional cdf of X given Y and it left limit |
ccdfxm |
Left-limit of ccdfx |
ccdfy |
Conditional cdf of Y given X and it left limit |
ccdfym |
Left-limit of ccdfy |
References
Nasri & Remillard (2023). Identifiability and inference for copula-based semiparametric models for random vectors with arbitrary marginal distributions. arXiv 2301.13408.
Nasri (2020). On non-central squared copulas. Statistics and Probability Letters.
Examples
set.seed(2)
data = matrix(rpois(20,1),ncol=2)
out0=EstBiCop(data,"gumbel")