SimGenCluster {CopulaGAMM} | R Documentation |
Simulation of clustered data
Description
Generate a random sample of observations from a copula-based mixed regression model.
Usage
SimGenCluster(
parC,
parM,
clu,
xc = NULL,
xm = NULL,
family,
rot = 0,
dfC = NULL,
model,
dfM = NULL,
offset = NULL
)
Arguments
parC |
vector of copula parameters; k1 is the number of covariates + constant for the copula |
parM |
vector of margin parameters; k2 is the number of covariates + constant for the margins |
clu |
vector of clusters (can be a factor) |
xc |
matrix (N x k1) of covariates for the copula, not including the constant (can be NULL) |
xm |
matrix (N x k2) of covariates for the margins, not including the constant (can be NULL) |
family |
copula family: "gaussian" , "t" , "clayton" , "joe", "frank" , "gumbel", "plackett" |
rot |
rotation: 0 (default), 90, 180 (survival), or 270 |
dfC |
degrees of freedom for the Student copula (default is NULL) |
model |
marginal distribution: "binomial" (bernoulli), "poisson", "nbinom" (mean is the parameter),"nbinom1" (p is the parameter), "geometric", "multinomial", exponential", "weibull", "normal" (gaussian),"t", "laplace" |
dfM |
degrees of freedom for the Student margins (default is NULL) |
offset |
offset for the margins (default is NULL) |
Value
y |
Simulated response |
y |
Simulated values |
Author(s)
Bruno N. Remillard
Examples
K=50 #number of clusters
n=5 #size of each cluster
N=n*K
set.seed(1)
clu=rep(c(1:K),each=n)
parC = 0 # yields tau = 0.5 for Clayton
parM= c(1,-1,4)
xm = runif(N)
y=SimGenCluster(parC,parM,xm,family="clayton",rot=90,clu=clu,model="gaussian")