fit.cdtamodel {CopulaDTA} | R Documentation |
Fit copula based bivariate beta-binomial distribution to diagnostic data.
fit.cdtamodel(
cdtamodel,
data,
SID,
cores = 3,
chains = 3,
iter = 6000,
warmup = 1000,
thin = 10,
...
)
cdtamodel |
An object of cdtamodel class from cdtamodel. |
data |
A data-frame with no missing values containing TP, TN, FP, FN, 'SID' and co-variables(if necessary). |
SID |
A string indicating the name of the column with the study identifier. |
cores |
A positive numeric values specifying the number of cores to use to execute parallel sampling. When the hardware has more at least 4 cores, the default is 3 cores and otherwise 1 core. |
chains |
A positive numeric value specifying the number of chains, default is 3. |
iter |
A positive numeric value specifying the number of iterations per chain. The default is 6000. |
warmup |
A positive numeric value (<iter) specifying the number of iterations to be discarded(burn-in/warm-up). The default is 1000. |
thin |
A positive numeric value specifying the interval in which the samples are stored. The default is 10. |
... |
Other optional parameters as specified in stan. |
An object of cdtafit class.
Victoria N Nyaga <victoria.nyaga@outlook.com>
Nyaga VN, Arbyn M, Aerts M (2017). CopulaDTA: An R Package for Copula-Based Beta-Binomial Models for Diagnostic Test Accuracy Studies in a Bayesian Framework. Journal of Statistical Software, 82(1), 1-27. doi:10.18637/jss.v082.c01
Agresti A (2002). Categorical Data Analysis. John Wiley & Sons, Inc.
Clayton DG (1978). A model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence. Biometrika,65(1), 141-151.
Frank MJ (1979). On The Simultaneous Associativity of F(x, y) and x + y - F(x, y). Aequationes Mathematicae, pp. 194-226.
Farlie DGJ (1960). The Performance of Some Correlation Coefficients for a General Bivariate Distribution. Biometrika, 47, 307-323.
Gumbel EJ (1960). Bivariate Exponential Distributions. Journal of the American Statistical Association, 55, 698-707.
Meyer C (2013). The Bivariate Normal Copula. Communications in Statistics - Theory and Methods, 42(13), 2402-2422.
Morgenstern D (1956). Einfache Beispiele Zweidimensionaler Verteilungen. Mitteilungsblatt furMathematische Statistik, 8, 23 - 235.
Sklar A (1959). Fonctions de Repartition a n Dimensions et Leurs Marges. Publications de l'Institut de Statistique de L'Universite de Paris, 8, 229-231.
data(telomerase)
model1 <- cdtamodel(copula = 'fgm')
model2 <- cdtamodel(copula = 'fgm',
modelargs=list(param=2,
prior.lse='normal',
par.lse1=0,
par.lse2=5,
prior.lsp='normal',
par.lsp1=0,
par.lsp2=5))
model3 <- cdtamodel(copula = 'fgm',
modelargs = list(formula.se = StudyID ~ Test - 1))
## Not run:
fit1 <- fit(model1,
SID='ID',
data=telomerase,
iter=2000,
warmup=1000,
thin=1,
seed=3)
fit2 <- fit(model2,
SID='StudyID',
data=ascus,
iter=2000,
warmup=1000,
thin=1,
seed=3)
## End(Not run)