| simu.Clayton {Copula.surv} | R Documentation | 
Simulating data from the Clayton copula
Description
n pairs of (U,V) are generated from the Clayton copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.Clayton(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n | 
 sample size  | 
alpha | 
 association (copula) parameter  | 
scale1 | 
 scale parameter for X  | 
scale2 | 
 scale parameter for Y  | 
shape1 | 
 shape parameter for X  | 
shape2 | 
 shape parameter for Y  | 
Print | 
 print Kendall's tau and means of X and Y if "TRUE"  | 
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U | 
 uniformly distributed on (0,1)  | 
V | 
 uniformly distributed on (0,1)  | 
X | 
 Weibull distributed (scale1, shape1)  | 
Y | 
 Weibull distributed (scale2, shape2)  | 
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.Clayton(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")