U2.Clayton {Copula.surv} | R Documentation |
Estimation of an association parameter via the unweighted estimator
Description
Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was defined as the unweighted estimator in Emura, Lin and Wang (2010).
Usage
U2.Clayton(x.obs,y.obs,dx,dy)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+2)) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
U2.Clayton(x.obs,y.obs,dx,dy)
[Package Copula.surv version 1.6 Index]