U1.Clayton {Copula.surv} | R Documentation |
Estimation of an association parameter via the pseudo-likelihood
Description
Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was derived by Clayton (1978) and reformulated by Emura, Lin and Wang (2010).
Usage
U1.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+2)) |
Author(s)
Takeshi Emura
References
Clayton DG (1978). A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141-51.
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
U1.Clayton(x.obs,y.obs,dx,dy)