Test.Clayton {Copula.surv} | R Documentation |
A goodness-of-fit test for the Clayton copula
Description
Perform a goodness-of-fit test for the Clayton copula based on Emura, Lin and Wang (2010). The test is asymptotically equivalent to the test of Shih (1998).
Usage
Test.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
See the references.
Value
theta1 |
association parameter by the pseudo-likelihood estimator |
theta2 |
association parameter by the unweighted estimator |
Stat |
log(theta1)-log(theta2) |
Z |
Z-value of the goodness-of-fit for the Clayton copula |
P |
P-value of the goodness-of-fit for the Clayton copula |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Shih JH (1998) A goodness-of-fit test for association in a bivariate survival model. Biometrika 85: 189-200
Examples
n=20
theta_true=2 ## association parameter ##
r1_true=2 ## hazard for X
r2_true=2 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
Test.Clayton(x.obs,y.obs,dx,dy)