Clayton.Markov2.MLE {Copula.Markov} | R Documentation |
Maximum Likelihood Estimation and Statistical Process Control Under the Clayton Copula with a 2nd order Markov chain.
Description
The maximum likelihood estimates are produced and the Shewhart control chart is drawn with k-sigma control limits (e.g., 3-sigma). The dependence model follows the Clayton copula and the marginal (stationary) distribution follows the normal distribution. The model diagnostic plot is also given (by the option "GOF=TRUE"). See Huang and Emura (2019) for the methodological details.
Usage
Clayton.Markov2.MLE(Y, k = 3, D = 1, plot = TRUE, GOF=FALSE)
Arguments
Y |
vector of datasets |
k |
constant determining the length between LCL and UCL (k=3 corresponds to 3-sigma limit) |
D |
diameter for U(-D, D) used in randomized Newton-Raphson |
plot |
show the control chart if TRUE |
GOF |
show the model diagnostic plot if TRUE |
Value
mu |
estimate, SE, and 95 percent CI |
sigma |
estimate, SE, and 95 percent CI |
alpha |
estimate, SE, and 95 percent CI |
Control_Limit |
Center = mu, LCL = mu - k*sigma, UCL = mu + k*sigma |
out_of_control |
IDs for out-of-control points |
Gradient |
gradients (must be zero) |
Hessian |
Hessian matrix |
Eigenvalue_Hessian |
Eigenvalues for the Hessian matrix |
KS.test |
KS statistics |
CM.test |
CM statistics |
log.likelihood |
Log-likelihood value for the estimation |
Author(s)
Xinwei Huang and Takeshi Emura
References
Huang XW, Emura T (2021), Model diagnostic procedures for copula-based Markov chain models for statistical process control, Communications in Statistics - Simulation and Computation, doi: 50(8):2345-67
Examples
Y = c(0.265, 0.256, 0.261, 0.261, 0.260, 0.257, 0.258, 0.263, 0.254, 0.254,
0.258, 0.256, 0.256, 0.265, 0.270, 0.267, 0.270, 0.267, 0.266, 0.271,
0.270, 0.264, 0.261, 0.264, 0.266, 0.264, 0.269, 0.268, 0.264, 0.262,
0.257, 0.255, 0.255, 0.253, 0.251, 0.254, 0.255)
Clayton.Markov2.MLE(Y, k = 1, D = 1, plot = TRUE)
Y=Clayton.Markov2.DATA(n=1000,mu=0,sigma=1,alpha=8)
Clayton.Markov2.MLE(Y, plot=TRUE)