Clayton.Markov.MLE.binom {Copula.Markov} | R Documentation |
Maximum Likelihood Estimation and Statistical Process Control Under the Clayton Copula
Description
The maximum likelihood estimates are produced and the Shewhart control chart is drawn with k-sigma control limits (e.g., 3-sigma). The dependence model follows the Clayton copula and the marginal (stationary) distribution follows the normal distribution.
Usage
Clayton.Markov.MLE.binom(Y, size, k = 3, method="nlm", plot = TRUE, GOF=FALSE)
Arguments
Y |
vector of observations |
size |
numbe of binomial trials |
method |
nlm or Newton |
k |
constant determining the length between LCL and UCL (k=3 corresponds to 3-sigma limit) |
plot |
show the control chart if TRUE |
GOF |
show the model diagnostic plot if TRUE |
Value
p |
estimate, SE, and 95 percent CI |
alpha |
estimate, SE, and 95 percent CI |
Control_Limit |
Center = n*p, LCL = mu - k*sigma, UCL = mu + k*sigma |
out_of_control |
IDs for out-of-control points |
Gradient |
gradients (must be zero) |
Hessian |
Hessian matrix |
Eigenvalue_Hessian |
Eigenvalues for the Hessian matrix |
KS.test |
KS statistics |
CM.test |
CM statistics |
log_likelihood |
Log-likelihood value for the estimation |
Author(s)
Huang XW, Emura T
References
Chen W (2018) Copula-based Markov chain model with binomial data, NCU Library
Huang XW, Emura T (2021-), Computational methods for a copula-based Markov chain model with a binomial time series, in review
Examples
size=50
prob=0.5
alpha=2
set.seed(1)
Y=Clayton.Markov.DATA.binom(n=500,size,prob,alpha)
Clayton.Markov.MLE.binom(Y,size=size,k=3,plot=TRUE)