Clayton.Markov.GOF {Copula.Markov} | R Documentation |
A goodness-of-fit test for the marginal normal distribution.
Description
Perform a parametric bootstrap test based on the Cramer-von Mises and Kolmogorov-Smirnov statistics as proposed by Huang and Emura (2019).
Usage
Clayton.Markov.GOF(Y, k = 3, D = 1, B = 200,GOF.plot=FALSE, method = "Newton")
Arguments
Y |
vector of datasets |
k |
constant determining the length between LCL and UCL (k=3 corresponds to 3-sigma limit) |
D |
diameter for U(-D, D) used in randomized Newton-Raphson |
B |
the number of Bootstrap replications |
GOF.plot |
if TRUE, show the model diagnostic plots for B bootstrap replications |
method |
Newton-Raphson method or nlm can be chosen |
Value
CM |
The Cramer-von Mises statistic and its P-value |
KS |
The Kolmogorov-Smirnov statistic and its P-value |
CM.boot |
Bootstrap values of the Cramer-von Mises statistics |
KS.boot |
Bootstrap values of the Kolmogorov-Smirnov statistics |
Author(s)
Takeshi Emura
References
Emura T, Long TH, Sun LH (2017), R routines for performing estimation and statistical process control under copula-based time series models, Communications in Statistics - Simulation and Computation, 46 (4): 3067-87
Long TH and Emura T (2014), A control chart using copula-based Markov chain models, Journal of the Chinese Statistical Association 52 (No.4): 466-96
Huang XW, Emura T (2021), Model diagnostic procedures for copula-based Markov chain models for statistical process control, Communications in Statistics - Simulation and Computation, doi: 50(8):2345-67
Examples
set.seed(1)
Y=Clayton.Markov.DATA(n=1000,mu=0,sigma=1,alpha=2)
Clayton.Markov.GOF(Y,B=5,GOF.plot=TRUE)